Cross Version Defect Prediction with Class Dependency Embeddings
- URL: http://arxiv.org/abs/2212.14404v1
- Date: Thu, 29 Dec 2022 18:24:39 GMT
- Title: Cross Version Defect Prediction with Class Dependency Embeddings
- Authors: Moti Cohen, Lior Rokach, Rami Puzis
- Abstract summary: We use the Class Dependency Network (CDN) as another predictor for defects, combined with static code metrics.
Our approach uses network embedding techniques to leverage CDN information without having to build the metrics manually.
- Score: 17.110933073074584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software Defect Prediction aims at predicting which software modules are the
most probable to contain defects. The idea behind this approach is to save time
during the development process by helping find bugs early. Defect Prediction
models are based on historical data. Specifically, one can use data collected
from past software distributions, or Versions, of the same target application
under analysis. Defect Prediction based on past versions is called Cross
Version Defect Prediction (CVDP). Traditionally, Static Code Metrics are used
to predict defects. In this work, we use the Class Dependency Network (CDN) as
another predictor for defects, combined with static code metrics. CDN data
contains structural information about the target application being analyzed.
Usually, CDN data is analyzed using different handcrafted network measures,
like Social Network metrics. Our approach uses network embedding techniques to
leverage CDN information without having to build the metrics manually. In order
to use the embeddings between versions, we incorporate different embedding
alignment techniques. To evaluate our approach, we performed experiments on 24
software release pairs and compared it against several benchmark methods. In
these experiments, we analyzed the performance of two different graph embedding
techniques, three anchor selection approaches, and two alignment techniques. We
also built a meta-model based on two different embeddings and achieved a
statistically significant improvement in AUC of 4.7% (p < 0.002) over the
baseline method.
Related papers
- Fact Checking Beyond Training Set [64.88575826304024]
We show that the retriever-reader suffers from performance deterioration when it is trained on labeled data from one domain and used in another domain.
We propose an adversarial algorithm to make the retriever component robust against distribution shift.
We then construct eight fact checking scenarios from these datasets, and compare our model to a set of strong baseline models.
arXiv Detail & Related papers (2024-03-27T15:15:14Z) - Method-Level Bug Severity Prediction using Source Code Metrics and LLMs [0.628122931748758]
We investigate source code metrics, source code representation using large language models (LLMs), and their combination in predicting bug severity labels.
Our results suggest that Decision Tree and Random Forest models outperform other models regarding our several evaluation metrics.
CodeBERT finetuning improves the bug severity prediction results significantly in the range of 29%-140% for several evaluation metrics.
arXiv Detail & Related papers (2023-09-06T14:38:07Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Heterogeneous Ensemble Learning for Enhanced Crash Forecasts -- A
Frequentest and Machine Learning based Stacking Framework [0.803552105641624]
In this study, we apply one of the key HEM methods, Stacking, to model crash frequency on five lane undivided segments (5T) of urban and suburban arterials.
The prediction performance of Stacking is compared with parametric statistical models (Poisson and negative binomial) and three state of the art machine learning techniques (Decision tree, random forest, and gradient boosting)
arXiv Detail & Related papers (2022-07-21T19:15:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Are Missing Links Predictable? An Inferential Benchmark for Knowledge
Graph Completion [79.07695173192472]
InferWiki improves upon existing benchmarks in inferential ability, assumptions, and patterns.
Each testing sample is predictable with supportive data in the training set.
In experiments, we curate two settings of InferWiki varying in sizes and structures, and apply the construction process on CoDEx as comparative datasets.
arXiv Detail & Related papers (2021-08-03T09:51:15Z) - Out-of-Vocabulary Entities in Link Prediction [1.9036571490366496]
Link prediction is often used as a proxy to evaluate the quality of embeddings.
As benchmarks are crucial for the fair comparison of algorithms, ensuring their quality is tantamount to providing a solid ground for developing better solutions.
We provide an implementation of an approach for spotting and removing such entities and provide corrected versions of the datasets WN18RR, FB15K-237, and YAGO3-10.
arXiv Detail & Related papers (2021-05-26T12:58:18Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
We propose D2A, a differential analysis based approach to label issues reported by static analysis tools.
We use D2A to generate a large labeled dataset to train models for vulnerability identification.
arXiv Detail & Related papers (2021-02-16T07:46:53Z) - The Integrity of Machine Learning Algorithms against Software Defect
Prediction [0.0]
This report analyses the performance of the Online Sequential Extreme Learning Machine (OS-ELM) proposed by Liang et.al.
OS-ELM trains faster than conventional deep neural networks and it always converges to the globally optimal solution.
The analysis is carried out on 3 projects KC1, PC4 and PC3 carried out by the NASA group.
arXiv Detail & Related papers (2020-09-05T17:26:56Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.