論文の概要: Examining Political Rhetoric with Epistemic Stance Detection
- arxiv url: http://arxiv.org/abs/2212.14486v1
- Date: Thu, 29 Dec 2022 23:47:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 16:21:48.931323
- Title: Examining Political Rhetoric with Epistemic Stance Detection
- Title(参考訳): エピステミックスタンス検出による政治レトリックの検討
- Authors: Ankita Gupta, Su Lin Blodgett, Justin H Gross, Brendan O'Connor
- Abstract要約: 我々は、より複雑な最先端のモデリングよりも優れたマルチソース姿勢予測のためのシンプルなRoBERTaベースのモデルを開発した。
我々は、米国の政治意見書のマスマーケットマニフェストコーパスを大規模に分析することで、その新しい政治科学への応用を実証する。
- 参考スコア(独自算出の注目度): 13.829628375546568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Participants in political discourse employ rhetorical strategies -- such as
hedging, attributions, or denials -- to display varying degrees of belief
commitments to claims proposed by themselves or others. Traditionally,
political scientists have studied these epistemic phenomena through
labor-intensive manual content analysis. We propose to help automate such work
through epistemic stance prediction, drawn from research in computational
semantics, to distinguish at the clausal level what is asserted, denied, or
only ambivalently suggested by the author or other mentioned entities (belief
holders). We first develop a simple RoBERTa-based model for multi-source stance
predictions that outperforms more complex state-of-the-art modeling. Then we
demonstrate its novel application to political science by conducting a
large-scale analysis of the Mass Market Manifestos corpus of U.S. political
opinion books, where we characterize trends in cited belief holders --
respected allies and opposed bogeymen -- across U.S. political ideologies.
- Abstract(参考訳): 政治談話の参加者は、ヘッジ、帰属、否定といった修辞的戦略を採用して、自分や他人が提案した主張に対する様々な信念のコミットメントを示す。
伝統的に、政治学者は労働集約的な手動コンテンツ分析を通じてこれらの認識現象を研究してきた。
筆者らは,計算意味論における研究から引き出された認識的スタンス予測を通じて,著者や他の主張する実体(保持者)が主張し,否定し,あるいはあいまいに提案する部分のみを識別するために,そのような作業を自動化することを提案する。
まず,マルチソース姿勢予測のためのシンプルなRoBERTaモデルを開発した。
そこで我々は,米国の政治イデオロギーにまたがって,引用された信念保有者(同盟国や反対するボギーメン)の傾向を特徴づける,米国の政治意見書の大衆市場マニフェスト集を大規模に分析することによって,その新しい政治科学への応用を実証する。
関連論文リスト
- Uncovering Political Bias in Emotion Inference Models: Implications for sentiment analysis in social science research [0.0]
本稿では、社会科学研究における感情分析(SA)に使用される機械学習モデルにおける政治的バイアスの存在について検討する。
ポーランドの感情分析モデルを用いた偏見調査を行った。
以上の結果から, 人間のラテンダーによるアノテーションは, モデルの予測に政治的偏見を伝播させることが示唆された。
論文 参考訳(メタデータ) (2024-07-18T20:31:07Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
既存のアプローチは、要約の50%以上で、ニュース記事の政治的意見やスタンスを変えている。
政治的視点分類器によって制御される拡散モデルに基づく要約手法であるP3SUMを提案する。
3つのニュース要約データセットの実験により、P3SUMは最先端の要約システムより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-16T10:14:28Z) - Inducing Political Bias Allows Language Models Anticipate Partisan
Reactions to Controversies [5.958974943807783]
本研究では,Large Language Models (LLMs) を用いたデジタル談話における政治的偏見の理解の課題に対処する。
本稿では,Partisan Bias Divergence AssessmentとPartisan Class Tendency Predictionからなる包括的分析フレームワークを提案する。
以上の結果から,感情的・道徳的ニュアンスを捉えたモデルの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-11-16T08:57:53Z) - The Face of Populism: Examining Differences in Facial Emotional
Expressions of Political Leaders Using Machine Learning [57.70351255180495]
深層学習に基づくコンピュータビジョンのアルゴリズムを、15カ国の政治指導者を描いた220本のYouTubeビデオのサンプルに適用する。
ポピュリスト・レトリックの度合いが異なるリーダー群間での否定的感情の平均スコアの統計的に有意な差を観察した。
論文 参考訳(メタデータ) (2023-04-19T18:32:49Z) - KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate
Political Stance Prediction [37.261840137596195]
政治スタンス予測(KHAN)に対する新しい知識認識アプローチを提案する。
本研究では,(1)単語・文間の関係を3段階に分けて学習する階層的注意ネットワーク(HAN)と,(2)実世界の実体の外部知識を政治的スタンス予測のプロセスに組み込む知識符号化(KE)を利用する。
実世界の3つのデータセットに対する広範な評価を通じて,(1)精度,(2)効率,(3)有効性の観点から,DASHの優位性を示す。
論文 参考訳(メタデータ) (2023-02-23T16:09:42Z) - PAR: Political Actor Representation Learning with Social Context and
Expert Knowledge [45.215862050840116]
我々は,textbfPolitical textbfActor textbfRepresentation学習フレームワークであるtextbfPARを提案する。
我々は,社会的文脈情報を活用するために,議員に関する事実文を検索し,抽出する。
次に、社会的文脈を取り入れた異種情報ネットワークを構築し、リレーショナルグラフニューラルネットワークを用いて立法者表現を学習する。
論文 参考訳(メタデータ) (2022-10-15T19:28:06Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Encoding Heterogeneous Social and Political Context for Entity Stance
Prediction [7.477393857078695]
本稿では,エンティティスタンス予測の新しい課題を提案する。
我々は、現代アメリカの政治に関する社会団体に関する事実をウィキペディアから回収する。
そして、我々は、ドメインの専門家の助けを借りて、政治イデオロギーに対する社会団体のスタンスに注釈を付ける。
論文 参考訳(メタデータ) (2021-08-09T08:59:43Z) - Political Ideology and Polarization of Policy Positions: A
Multi-dimensional Approach [19.435030285532854]
我々は,政策のイデオロギーを,姿勢とイデオロギーの曖昧な共存を区別して検討する。
政治学の理論的な記述と相まって、イデオロギーを多次元的構成として扱う。
この枠組みは, 時間的・多面的なイデオロギー距離の測定値である分極の定量的解析を可能にすることを示す。
論文 参考訳(メタデータ) (2021-06-28T04:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。