ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models
- URL: http://arxiv.org/abs/2212.14599v1
- Date: Fri, 30 Dec 2022 08:48:19 GMT
- Title: ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models
- Authors: Arkadipta De, Satya Swaroop Gudipudi, Sourab Panchanan, Maunendra
Sankar Desarkar
- Abstract summary: ComplAI is a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior.
It evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective.
- Score: 6.279863832853343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advances in Artificial Intelligence are creating new opportunities to
improve lives of people around the world, from business to healthcare, from
lifestyle to education. For example, some systems profile the users using their
demographic and behavioral characteristics to make certain domain-specific
predictions. Often, such predictions impact the life of the user directly or
indirectly (e.g., loan disbursement, determining insurance coverage,
shortlisting applications, etc.). As a result, the concerns over such
AI-enabled systems are also increasing. To address these concerns, such systems
are mandated to be responsible i.e., transparent, fair, and explainable to
developers and end-users. In this paper, we present ComplAI, a unique framework
to enable, observe, analyze and quantify explainability, robustness,
performance, fairness, and model behavior in drift scenarios, and to provide a
single Trust Factor that evaluates different supervised Machine Learning models
not just from their ability to make correct predictions but from overall
responsibility perspective. The framework helps users to (a) connect their
models and enable explanations, (b) assess and visualize different aspects of
the model, such as robustness, drift susceptibility, and fairness, and (c)
compare different models (from different model families or obtained through
different hyperparameter settings) from an overall perspective thereby
facilitating actionable recourse for improvement of the models. It is model
agnostic and works with different supervised machine learning scenarios (i.e.,
Binary Classification, Multi-class Classification, and Regression) and
frameworks. It can be seamlessly integrated with any ML life-cycle framework.
Thus, this already deployed framework aims to unify critical aspects of
Responsible AI systems for regulating the development process of such real
systems.
Related papers
- From Efficiency to Equity: Measuring Fairness in Preference Learning [3.2132738637761027]
We evaluate fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice.
We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models.
arXiv Detail & Related papers (2024-10-24T15:25:56Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - Multi-Agent Verification and Control with Probabilistic Model Checking [4.56877715768796]
Probabilistic model checking is a technique for formal automated reasoning about software or hardware systems.
It builds upon ideas and techniques from a diverse range of fields, from logic, automata and graph theory, to optimisation, numerical methods and control.
In recent years, probabilistic model checking has also been extended to integrate ideas from game theory.
arXiv Detail & Related papers (2023-08-05T09:31:32Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
arXiv Detail & Related papers (2023-07-17T13:47:41Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
We develop six distinct model-agnostic metrics designed to quantify the extent to which model predictions can be explained.
These metrics measure different aspects of model explainability, ranging from local importance, global importance, and surrogate predictions.
We demonstrate the practical utility of these metrics on classification and regression tasks, and integrate these metrics into an existing Python package for public use.
arXiv Detail & Related papers (2023-02-23T15:28:36Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - A Weighted Solution to SVM Actionability and Interpretability [0.0]
Actionability is as important as interpretability or explainability of machine learning models, an ongoing and important research topic.
This paper finds a solution to the question of actionability on both linear and non-linear SVM models.
arXiv Detail & Related papers (2020-12-06T20:35:25Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.