Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines
- URL: http://arxiv.org/abs/2307.08485v1
- Date: Mon, 17 Jul 2023 13:47:41 GMT
- Title: Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines
- Authors: Shree Charran R and Sandipan Das Mahapatra
- Abstract summary: Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Interpretability is a crucial aspect of machine learning models that enables
humans to understand and trust the decision-making process of these models. In
many real-world applications, the interpretability of models is essential for
legal, ethical, and practical reasons. For instance, in the banking domain,
interpretability is critical for lenders and borrowers to understand the
reasoning behind the acceptance or rejection of loan applications as per fair
lending laws. However, achieving interpretability in machine learning models is
challenging, especially for complex high-performance models. Hence Explainable
Boosting Machines (EBMs) have been gaining popularity due to their
interpretable and high-performance nature in various prediction tasks. However,
these models can suffer from issues such as spurious interactions with
redundant features and single-feature dominance across all interactions, which
can affect the interpretability and reliability of the model's predictions. In
this paper, we explore novel approaches to address these issues by utilizing
alternate Cross-feature selection, ensemble features and model configuration
alteration techniques. Our approach involves a multi-step feature selection
procedure that selects a set of candidate features, ensemble features and then
benchmark the same using the EBM model. We evaluate our method on three
benchmark datasets and show that the alternate techniques outperform vanilla
EBM methods, while providing better interpretability and feature selection
stability, and improving the model's predictive performance. Moreover, we show
that our approach can identify meaningful interactions and reduce the dominance
of single features in the model's predictions, leading to more reliable and
interpretable models.
Index Terms- Interpretability, EBM's, ensemble, feature selection.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
We develop six distinct model-agnostic metrics designed to quantify the extent to which model predictions can be explained.
These metrics measure different aspects of model explainability, ranging from local importance, global importance, and surrogate predictions.
We demonstrate the practical utility of these metrics on classification and regression tasks, and integrate these metrics into an existing Python package for public use.
arXiv Detail & Related papers (2023-02-23T15:28:36Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAI is a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior.
It evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective.
arXiv Detail & Related papers (2022-12-30T08:48:19Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.