Multi-Agent Verification and Control with Probabilistic Model Checking
- URL: http://arxiv.org/abs/2308.02829v1
- Date: Sat, 5 Aug 2023 09:31:32 GMT
- Title: Multi-Agent Verification and Control with Probabilistic Model Checking
- Authors: David Parker
- Abstract summary: Probabilistic model checking is a technique for formal automated reasoning about software or hardware systems.
It builds upon ideas and techniques from a diverse range of fields, from logic, automata and graph theory, to optimisation, numerical methods and control.
In recent years, probabilistic model checking has also been extended to integrate ideas from game theory.
- Score: 4.56877715768796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic model checking is a technique for formal automated reasoning
about software or hardware systems that operate in the context of uncertainty
or stochasticity. It builds upon ideas and techniques from a diverse range of
fields, from logic, automata and graph theory, to optimisation, numerical
methods and control. In recent years, probabilistic model checking has also
been extended to integrate ideas from game theory, notably using models such as
stochastic games and solution concepts such as equilibria, to formally verify
the interaction of multiple rational agents with distinct objectives. This
provides a means to reason flexibly about agents acting in either an
adversarial or a collaborative fashion, and opens up opportunities to tackle
new problems within, for example, artificial intelligence, robotics and
autonomous systems. In this paper, we summarise some of the advances in this
area, and highlight applications for which they have already been used. We
discuss how the strengths of probabilistic model checking apply, or have the
potential to apply, to the multi-agent setting and outline some of the key
challenges required to make further progress in this field.
Related papers
- An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - MechAgents: Large language model multi-agent collaborations can solve
mechanics problems, generate new data, and integrate knowledge [0.6708125191843434]
A set of AI agents can solve mechanics tasks, here demonstrated for elasticity problems, via autonomous collaborations.
A two-agent team can effectively write, execute and self-correct code, in order to apply finite element methods to solve classical elasticity problems.
For more complex tasks, we construct a larger group of agents with enhanced division of labor among planning, formulating, coding, executing and criticizing the process and results.
arXiv Detail & Related papers (2023-11-14T13:49:03Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
arXiv Detail & Related papers (2023-07-17T13:47:41Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks.
New paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning.
Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems.
arXiv Detail & Related papers (2023-03-07T18:44:07Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAI is a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior.
It evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective.
arXiv Detail & Related papers (2022-12-30T08:48:19Z) - Modeling Transformative AI Risks (MTAIR) Project -- Summary Report [0.0]
This report builds on an earlier diagram by Cottier and Shah which laid out some of the crucial disagreements ("cruxes") visually, with some explanation.
The model starts with a discussion of reasoning via analogies and general prior beliefs about artificial intelligence.
It lays out a model of different paths and enabling technologies for high-level machine intelligence, and a model of how advances in the capabilities of these systems might proceed.
The model also looks specifically at the question of learned optimization, and whether machine learning systems will create mesa-optimizers.
arXiv Detail & Related papers (2022-06-19T09:11:23Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.