論文の概要: Selected aspects of complex, hypercomplex and fuzzy neural networks
- arxiv url: http://arxiv.org/abs/2301.00007v2
- Date: Fri, 20 Oct 2023 19:43:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 14:06:24.618193
- Title: Selected aspects of complex, hypercomplex and fuzzy neural networks
- Title(参考訳): 複雑・超複雑・ファジィニューラルネットワークの選択的側面
- Authors: Agnieszka Niemczynowicz, Rados{\l}aw A. Kycia, Maciej Jaworski, Artur
Siemaszko, Jose M. Calabuig, Lluis M. Garc\'ia-Raffi, Baruch Schneider, Diana
Berseghyan, Irina Perfiljeva, Vilem Novak, Piotr Artiemjew
- Abstract要約: この報告書は、著者個人の関心を反映しており、現在、ANNの規律の包括的なレビューとして扱うことはできない。
この報告書は、2022年9月にポーランドのオルシュティンにあるワルミア大学とマズリー校で行われた複雑な、超複雑、ファジィニューラルネットワークの数学的側面に関するプロジェクト「戦略研究パートナーシップ」の成果である。
- 参考スコア(独自算出の注目度): 0.8005040846973244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This short report reviews the current state of the research and methodology
on theoretical and practical aspects of Artificial Neural Networks (ANN). It
was prepared to gather state-of-the-art knowledge needed to construct complex,
hypercomplex and fuzzy neural networks.
The report reflects the individual interests of the authors and, by now
means, cannot be treated as a comprehensive review of the ANN discipline.
Considering the fast development of this field, it is currently impossible to
do a detailed review of a considerable number of pages.
The report is an outcome of the Project 'The Strategic Research Partnership
for the mathematical aspects of complex, hypercomplex and fuzzy neural
networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland,
organized in September 2022.
- Abstract(参考訳): 本稿では,ANN(Artificial Neural Networks)の理論的および実践的側面に関する研究および方法論の現状について概説する。
複雑な超複雑でファジィなニューラルネットワークを構築するために必要な最先端の知識を集める準備が整った。
この報告書は著者の個人的関心を反映しており、現在ではann分野の包括的なレビューとして扱うことはできない。
この分野の急速な発展を考えると、現在、かなりの数のページを詳細にレビューすることは不可能である。
この報告書は、2022年9月にポーランドのオルシュティンにあるワルミア大学とマズリー校で行われた複雑な、超複雑、ファジィニューラルネットワークの数学的側面に関するプロジェクト「戦略研究パートナーシップ」の成果である。
関連論文リスト
- From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity [0.0]
我々は,基礎となるデータのホモロジー構造上に構築された,疎密な高階グラフィカルアーキテクチャを特徴とする,新しいディープニューラルネットワークユニットを開発する。
その結果、この新しい設計の利点は、ごく少数のパラメータだけで最先端の機械学習モデルとディープラーニングモデルの結果を結び付けるか、克服することができる。
論文 参考訳(メタデータ) (2023-06-27T09:46:16Z) - Architectures of Topological Deep Learning: A Survey of Message-Passing
Topological Neural Networks [5.324479750432588]
トポロジカルディープラーニング(TDL)は、複雑なシステムに関連するデータから知識を処理、抽出するためのフレームワークを提供する。
TDLは、応用科学以上の分野において、破滅の約束を守る理論的、実践的な利点を示してきた。
リレーショナルシステムにおけるTDL文学の急速な発展は、メッセージパストトポロジカルニューラルネットワーク(TNN)アーキテクチャにおける表記と言語の統合の欠如につながっている。
これは、既存の作業に基づいて構築し、メッセージパッシングTNNを新たな現実的な問題にデプロイする上で、真の障害となる。
論文 参考訳(メタデータ) (2023-04-20T01:02:13Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
ニューラルシンボリック・コンピューティング(NeSy)は、人工知能(AI)の活発な研究領域である。
NeSyは、ニューラルネットワークにおける記号表現の推論と解釈可能性の利点と堅牢な学習の整合性を示す。
論文 参考訳(メタデータ) (2022-10-28T04:38:10Z) - On the Study of Sample Complexity for Polynomial Neural Networks [13.265045615849099]
様々な種類のニューラルネットワークアーキテクチャの中で、サンプルニューラルネットワーク(PNN)は近年、スペクトル分析によって分析可能であることが示されている。
本稿では,従来の文献をPNNに拡張し,PNNのサンプル複雑性に関する新たな結果を得る。
論文 参考訳(メタデータ) (2022-07-18T19:10:53Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
機械学習の最近の進歩は、座標ベースニューラルネットワークを用いた視覚コンピューティング問題の解決への関心が高まっている。
ニューラルネットワークは、3D形状と画像の合成、人体のアニメーション、3D再構成、ポーズ推定に成功している。
本報告は、文脈、数学的基礎、および、ニューラルネットワークに関する文献の広範なレビューを提供する。
論文 参考訳(メタデータ) (2021-11-22T18:57:51Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - Artificial neural networks for neuroscientists: A primer [4.771833920251869]
ニューラルネットワーク(ANN)は、神経科学に注目が集まる機械学習において必須のツールである。
この教養的なプライマーでは、ANNを導入し、神経科学的な問題を研究するためにどのように成果を上げてきたかを実証する。
この数学的枠組みを神経生物学に近づけることに焦点をあてて、ANNの分析、構造、学習のカスタマイズ方法について詳述する。
論文 参考訳(メタデータ) (2020-06-01T15:08:42Z) - A Comprehensive Survey of Neural Architecture Search: Challenges and
Solutions [48.76705090826339]
ニューラルネットワーク探索(NAS)は革命的アルゴリズムであり、関連する研究は複雑でリッチである。
まず、初期のNASアルゴリズムの特徴の概要から始め、これらの初期のNASアルゴリズムの問題を要約する。
さらに,これらの研究の詳細な分析,比較,要約を行う。
論文 参考訳(メタデータ) (2020-06-01T13:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。