論文の概要: Self-Supervised Object Segmentation with a Cut-and-Pasting GAN
- arxiv url: http://arxiv.org/abs/2301.00366v1
- Date: Sun, 1 Jan 2023 07:42:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 14:17:40.613371
- Title: Self-Supervised Object Segmentation with a Cut-and-Pasting GAN
- Title(参考訳): カット・アンド・パスング GAN を用いた自己監督型オブジェクトセグメンテーション
- Authors: Kunal Chaturvedi, Ali Braytee, Jun Li, Mukesh Prasad
- Abstract要約: 本稿では,前景オブジェクトセグメンテーションを行うための,自己教師型カット・アンド・ペーストGANを提案する。
我々は、U-Netベースの識別器と組み合わせて、シンプルながら効果的な自己教師型アプローチによって、この目標を達成する。
実験の結果,提案手法は標準ベンチマークデータセットの最先端手法よりも大幅に優れていた。
- 参考スコア(独自算出の注目度): 8.683844587821918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel self-supervised based Cut-and-Paste GAN to
perform foreground object segmentation and generate realistic composite images
without manual annotations. We accomplish this goal by a simple yet effective
self-supervised approach coupled with the U-Net based discriminator. The
proposed method extends the ability of the standard discriminators to learn not
only the global data representations via classification (real/fake) but also
learn semantic and structural information through pseudo labels created using
the self-supervised task. The proposed method empowers the generator to create
meaningful masks by forcing it to learn informative per-pixel as well as global
image feedback from the discriminator. Our experiments demonstrate that our
proposed method significantly outperforms the state-of-the-art methods on the
standard benchmark datasets.
- Abstract(参考訳): 本稿では,手動のアノテーションを使わずに,前景オブジェクトのセグメンテーションを行い,リアルな合成画像を生成するための,自己監督型カット・アンド・ペーストGANを提案する。
我々は、U-Netベースの識別器と組み合わせて、シンプルながら効果的な自己教師型アプローチによって、この目標を達成する。
提案手法は,グローバルなデータ表現を分類(リアル/フェイク)によって学習するだけでなく,自己管理タスクを用いて作成した擬似ラベルを用いて意味や構造情報を学習する。
提案手法では,各画素ごとの情報学習や,識別器からのグローバルイメージフィードバックを強制することで,意味のあるマスクを作成することができる。
実験により,提案手法が標準ベンチマークデータセットの最先端手法を大幅に上回ることを示した。
関連論文リスト
- SOHES: Self-supervised Open-world Hierarchical Entity Segmentation [82.45303116125021]
この研究は、人間のアノテーションを必要としない新しいアプローチであるSOHES(Self-supervised Open World Hierarchical Entities)を提示する。
視覚的特徴クラスタリングにより高品質な擬似ラベルを生成し,教師同士の学習によって擬似ラベルの雑音を補正する。
学習データとして生画像を用いることにより,自己監督型オープンワールドセグメンテーションにおける前例のない性能を実現する。
論文 参考訳(メタデータ) (2024-04-18T17:59:46Z) - Structural Adversarial Objectives for Self-Supervised Representation
Learning [19.471586646254373]
本稿では,自己指導型表現学習の差別化を,構造モデリングの責務を付加することで行うことを提案する。
ネットワーク上の効率的なスムーズ性正規化器と組み合わせて、これらの目的は識別器を案内し、情報表現の抽出を学ぶ。
実験により,GANを自己指導対象に組み込むことで,表現学習の観点から評価された差別化要因が,対照的な学習アプローチによって訓練されたネットワークと競合することを示す。
論文 参考訳(メタデータ) (2023-09-30T12:27:53Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
自己教師付き事前学習(SSP)は、ラベル付きデータなしで有意義な特徴表現を抽出できる機械学習の一般的な手法として登場した。
本研究は、コンピュータビジョンタスクにおける純粋な自己教師付き学習(SSL)技術の有効性を評価する。
論文 参考訳(メタデータ) (2023-08-22T13:55:57Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Learning ECG signal features without backpropagation [0.0]
時系列型データの表現を生成する新しい手法を提案する。
この方法は理論物理学の考えに頼り、データ駆動方式でコンパクトな表現を構築する。
本稿では,ECG信号分類の課題に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-07-04T21:35:49Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
自己教師付き学習モデルは、人間のアノテーションを必要とせずにリッチな視覚表現を学習することが示されている。
本稿では,クラスタリングに基づく自己教師付き手法を半教師付き学習者へと変換する,概念的に単純だが経験的に強力な手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T01:09:18Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - Information Maximization Clustering via Multi-View Self-Labelling [9.947717243638289]
本稿では,意味のある表現を同時に学習し,対応するアノテーションを割り当てる単一フェーズクラスタリング手法を提案する。
これは、離散表現をネットを通じて自己監督パラダイムに統合することで達成される。
実験の結果,提案手法は,平均精度89.1%,49.0%で最先端技術を上回ることがわかった。
論文 参考訳(メタデータ) (2021-03-12T16:04:41Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
我々は、オブジェクトの他の部分に注意を払うために、ネットワークを強制する単純で効果的なアプローチを提案する。
具体的には、画像の特徴をクラスタリングして、アノテーション付き親クラスごとに擬似サブカテゴリラベルを生成する。
提案手法の有効性を検証し,提案手法が最先端手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2020-08-03T20:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。