SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network
for Object Segmentation
- URL: http://arxiv.org/abs/2301.00366v3
- Date: Tue, 4 Apr 2023 18:44:03 GMT
- Title: SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network
for Object Segmentation
- Authors: Kunal Chaturvedi, Ali Braytee, Jun Li, Mukesh Prasad
- Abstract summary: This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation.
We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator.
Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
- Score: 8.683844587821918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel self-supervised based Cut-and-Paste GAN to
perform foreground object segmentation and generate realistic composite images
without manual annotations. We accomplish this goal by a simple yet effective
self-supervised approach coupled with the U-Net based discriminator. The
proposed method extends the ability of the standard discriminators to learn not
only the global data representations via classification (real/fake) but also
learn semantic and structural information through pseudo labels created using
the self-supervised task. The proposed method empowers the generator to create
meaningful masks by forcing it to learn informative per-pixel as well as global
image feedback from the discriminator. Our experiments demonstrate that our
proposed method significantly outperforms the state-of-the-art methods on the
standard benchmark datasets.
Related papers
- SOHES: Self-supervised Open-world Hierarchical Entity Segmentation [82.45303116125021]
This work presents Self-supervised Open-world Hierarchical Entities (SOHES), a novel approach that eliminates the need for human annotations.
We produce abundant high-quality pseudo-labels through visual feature clustering, and rectify the noises in pseudo-labels via a teacher- mutual-learning procedure.
Using raw images as the sole training data, our method achieves unprecedented performance in self-supervised open-world segmentation.
arXiv Detail & Related papers (2024-04-18T17:59:46Z) - Structural Adversarial Objectives for Self-Supervised Representation
Learning [19.471586646254373]
We propose objectives that task the discriminator for self-supervised representation learning via additional structural modeling responsibilities.
In combination with an efficient smoothness regularizer imposed on the network, these objectives guide the discriminator to learn to extract informative representations.
Experiments demonstrate that equipping GANs with our self-supervised objectives suffices to produce discriminators which, evaluated in terms of representation learning, compete with networks trained by contrastive learning approaches.
arXiv Detail & Related papers (2023-09-30T12:27:53Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data.
This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks.
arXiv Detail & Related papers (2023-08-22T13:55:57Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Learning ECG signal features without backpropagation [0.0]
We propose a novel method to generate representations for time series-type data.
This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way.
We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
arXiv Detail & Related papers (2023-07-04T21:35:49Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
Self-supervised learning models have been shown to learn rich visual representations without requiring human annotations.
We propose a conceptually simple yet empirically powerful approach to turn clustering-based self-supervised methods into semi-supervised learners.
arXiv Detail & Related papers (2023-06-13T01:09:18Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Information Maximization Clustering via Multi-View Self-Labelling [9.947717243638289]
We propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations.
This is achieved by integrating a discrete representation into the self-supervised paradigm through a net.
Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively.
arXiv Detail & Related papers (2021-03-12T16:04:41Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
We propose a simple yet effective approach to enforce the network to pay attention to other parts of an object.
Specifically, we perform clustering on image features to generate pseudo sub-categories labels within each annotated parent class.
We conduct extensive analysis to validate the proposed method and show that our approach performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-03T20:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.