Learning ECG signal features without backpropagation
- URL: http://arxiv.org/abs/2307.01930v1
- Date: Tue, 4 Jul 2023 21:35:49 GMT
- Title: Learning ECG signal features without backpropagation
- Authors: P\'eter P\'osfay, Marcell T. Kurbucz, P\'eter Kov\'acs, Antal
Jakov\'ac
- Abstract summary: We propose a novel method to generate representations for time series-type data.
This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way.
We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation learning has become a crucial area of research in machine
learning, as it aims to discover efficient ways of representing raw data with
useful features to increase the effectiveness, scope and applicability of
downstream tasks such as classification and prediction. In this paper, we
propose a novel method to generate representations for time series-type data.
This method relies on ideas from theoretical physics to construct a compact
representation in a data-driven way, and it can capture both the underlying
structure of the data and task-specific information while still remaining
intuitive, interpretable and verifiable. This novel methodology aims to
identify linear laws that can effectively capture a shared characteristic among
samples belonging to a specific class. By subsequently utilizing these laws to
generate a classifier-agnostic representation in a forward manner, they become
applicable in a generalized setting. We demonstrate the effectiveness of our
approach on the task of ECG signal classification, achieving state-of-the-art
performance.
Related papers
- Knowledge-guided EEG Representation Learning [27.8095014391814]
Self-supervised learning has produced impressive results in multimedia domains of audio, vision and speech.
We propose a self-supervised model for EEG, which provides robust performance and remarkable parameter efficiency.
We also propose a novel knowledge-guided pre-training objective that accounts for the idiosyncrasies of the EEG signal.
arXiv Detail & Related papers (2024-02-15T01:52:44Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Active Weighted Aging Ensemble for Drifted Data Stream Classification [2.277447144331876]
Concept drift destabilizes the performance of the classification model and seriously degrades its quality.
The proposed method has been evaluated through computer experiments using both real and generated data streams.
The results confirm the high quality of the proposed algorithm over state-of-the-art methods.
arXiv Detail & Related papers (2021-12-19T13:52:53Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - Function Contrastive Learning of Transferable Meta-Representations [38.31692245188669]
We study the implications of joint training on the transferability of the meta-representations.
We propose a decoupled encoder-decoder approach to supervised meta-learning.
arXiv Detail & Related papers (2020-10-14T13:50:22Z) - Fantastic Features and Where to Find Them: Detecting Cognitive
Impairment with a Subsequence Classification Guided Approach [6.063165888023164]
We describe a new approach to feature engineering that leverages sequential machine learning models and domain knowledge to predict which features help enhance performance.
We demonstrate that CI classification accuracy improves by 2.3% over a strong baseline when using features produced by this method.
arXiv Detail & Related papers (2020-10-13T17:57:18Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - ALEX: Active Learning based Enhancement of a Model's Explainability [34.26945469627691]
An active learning (AL) algorithm seeks to construct an effective classifier with a minimal number of labeled examples in a bootstrapping manner.
In the era of data-driven learning, this is an important research direction to pursue.
This paper describes our work-in-progress towards developing an AL selection function that in addition to model effectiveness also seeks to improve on the interpretability of a model during the bootstrapping steps.
arXiv Detail & Related papers (2020-09-02T07:15:39Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.