Learning ECG signal features without backpropagation
- URL: http://arxiv.org/abs/2307.01930v1
- Date: Tue, 4 Jul 2023 21:35:49 GMT
- Title: Learning ECG signal features without backpropagation
- Authors: P\'eter P\'osfay, Marcell T. Kurbucz, P\'eter Kov\'acs, Antal
Jakov\'ac
- Abstract summary: We propose a novel method to generate representations for time series-type data.
This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way.
We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation learning has become a crucial area of research in machine
learning, as it aims to discover efficient ways of representing raw data with
useful features to increase the effectiveness, scope and applicability of
downstream tasks such as classification and prediction. In this paper, we
propose a novel method to generate representations for time series-type data.
This method relies on ideas from theoretical physics to construct a compact
representation in a data-driven way, and it can capture both the underlying
structure of the data and task-specific information while still remaining
intuitive, interpretable and verifiable. This novel methodology aims to
identify linear laws that can effectively capture a shared characteristic among
samples belonging to a specific class. By subsequently utilizing these laws to
generate a classifier-agnostic representation in a forward manner, they become
applicable in a generalized setting. We demonstrate the effectiveness of our
approach on the task of ECG signal classification, achieving state-of-the-art
performance.
Related papers
- A CNN-based Local-Global Self-Attention via Averaged Window Embeddings for Hierarchical ECG Analysis [1.0844302367985357]
We propose a novel Local-Global Attention ECG model (LGA-ECG) to address this limitation.
Our approach extracts queries by averaging embeddings obtained from overlapping convolutional windows.
Experiments conducted on the CODE-15 dataset demonstrate that LGA-ECG outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-04-13T01:21:18Z) - Neuro-Informed Adaptive Learning (NIAL) Algorithm: A Hybrid Deep Learning Approach for ECG Signal Classification [0.0]
This study introduces the Neuro-Informed Adaptive Learning (NIAL) algorithm, a hybrid approach integrating convolutional neural networks (CNNs) and transformer-based attention mechanisms to enhance ECG signal classification.
The algorithm dynamically adjusts learning rates based on real-time validation performance, ensuring efficient convergence.
Using the MIT-BIH Arrhythmia and PTB Diagnostic ECG datasets, our model achieves high classification accuracy, outperforming conventional approaches.
arXiv Detail & Related papers (2025-03-12T14:37:53Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.
We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.
ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
Temporal Graph Learning (TGL) has become a prevalent technique across diverse real-world applications.
This paper investigates the generalization ability of different TGL algorithms.
We propose a simplified TGL network, which enjoys a small generalization error, improved overall performance, and lower model complexity.
arXiv Detail & Related papers (2024-02-26T08:22:22Z) - Knowledge-guided EEG Representation Learning [27.8095014391814]
Self-supervised learning has produced impressive results in multimedia domains of audio, vision and speech.
We propose a self-supervised model for EEG, which provides robust performance and remarkable parameter efficiency.
We also propose a novel knowledge-guided pre-training objective that accounts for the idiosyncrasies of the EEG signal.
arXiv Detail & Related papers (2024-02-15T01:52:44Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Active Weighted Aging Ensemble for Drifted Data Stream Classification [2.277447144331876]
Concept drift destabilizes the performance of the classification model and seriously degrades its quality.
The proposed method has been evaluated through computer experiments using both real and generated data streams.
The results confirm the high quality of the proposed algorithm over state-of-the-art methods.
arXiv Detail & Related papers (2021-12-19T13:52:53Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - Function Contrastive Learning of Transferable Meta-Representations [38.31692245188669]
We study the implications of joint training on the transferability of the meta-representations.
We propose a decoupled encoder-decoder approach to supervised meta-learning.
arXiv Detail & Related papers (2020-10-14T13:50:22Z) - Fantastic Features and Where to Find Them: Detecting Cognitive
Impairment with a Subsequence Classification Guided Approach [6.063165888023164]
We describe a new approach to feature engineering that leverages sequential machine learning models and domain knowledge to predict which features help enhance performance.
We demonstrate that CI classification accuracy improves by 2.3% over a strong baseline when using features produced by this method.
arXiv Detail & Related papers (2020-10-13T17:57:18Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - ALEX: Active Learning based Enhancement of a Model's Explainability [34.26945469627691]
An active learning (AL) algorithm seeks to construct an effective classifier with a minimal number of labeled examples in a bootstrapping manner.
In the era of data-driven learning, this is an important research direction to pursue.
This paper describes our work-in-progress towards developing an AL selection function that in addition to model effectiveness also seeks to improve on the interpretability of a model during the bootstrapping steps.
arXiv Detail & Related papers (2020-09-02T07:15:39Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.