A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization
- URL: http://arxiv.org/abs/2301.00477v2
- Date: Sun, 06 Oct 2024 02:55:30 GMT
- Title: A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization
- Authors: Albert S. Berahas, Miaolan Xie, Baoyu Zhou,
- Abstract summary: It is assumed that constraint function values and derivatives are available, but only programming approximations of the objective function and its associated derivatives can be computed.
A high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived.
- Score: 2.3814052021083354
- License:
- Abstract: A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Inequality Constrained Stochastic Nonlinear Optimization via Active-Set
Sequential Quadratic Programming [17.9230793188835]
We study nonlinear optimization problems with objective and deterministic equality and inequality constraints.
We propose an active-set sequentialAdaptive programming algorithm, using a differentiable exact augmented Lagrangian as the merit function.
The algorithm adaptively selects the parameters of augmented Lagrangian and performs line search to decide the stepsize.
arXiv Detail & Related papers (2021-09-23T17:12:17Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
Problems of convex optimization with two sets of constraints arise frequently in the context of semidefinite programming.
Since projection onto the first set of constraints is difficult, it becomes necessary to explore projection-free algorithms.
The efficacy of the proposed algorithms is tested on relevant applications of sparse matrix estimation, clustering via semidefinite relaxation, and uniform sparsest cut problem.
arXiv Detail & Related papers (2021-07-14T08:01:30Z) - A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear
Equality Constrained Optimization with Rank-Deficient Jacobians [11.03311584463036]
A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems.
Results of numerical experiments demonstrate that the algorithm offers superior performance when compared to popular alternatives.
arXiv Detail & Related papers (2021-06-24T13:46:52Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Sequential Quadratic Optimization for Nonlinear Equality Constrained
Stochastic Optimization [10.017195276758454]
It is assumed in this setting that it is intractable to compute objective function and derivative values explicitly.
An algorithm is proposed for the deterministic setting that is modeled after a state-of-the-art line-search SQP algorithm.
The results of numerical experiments demonstrate the practical performance of our proposed techniques.
arXiv Detail & Related papers (2020-07-20T23:04:26Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.