Targeted Phishing Campaigns using Large Scale Language Models
- URL: http://arxiv.org/abs/2301.00665v1
- Date: Fri, 30 Dec 2022 03:18:05 GMT
- Title: Targeted Phishing Campaigns using Large Scale Language Models
- Authors: Rabimba Karanjai
- Abstract summary: Phishing emails are fraudulent messages that aim to trick individuals into revealing sensitive information or taking actions that benefit the attackers.
We propose a framework for evaluating the performance of NLMs in generating these types of emails based on various criteria, including the quality of the generated text.
Our evaluations show that NLMs are capable of generating phishing emails that are difficult to detect and that have a high success rate in tricking individuals, but their effectiveness varies based on the specific NLM and training data used.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this research, we aim to explore the potential of natural language models
(NLMs) such as GPT-3 and GPT-2 to generate effective phishing emails. Phishing
emails are fraudulent messages that aim to trick individuals into revealing
sensitive information or taking actions that benefit the attackers. We propose
a framework for evaluating the performance of NLMs in generating these types of
emails based on various criteria, including the quality of the generated text,
the ability to bypass spam filters, and the success rate of tricking
individuals. Our evaluations show that NLMs are capable of generating phishing
emails that are difficult to detect and that have a high success rate in
tricking individuals, but their effectiveness varies based on the specific NLM
and training data used. Our research indicates that NLMs could have a
significant impact on the prevalence of phishing attacks and emphasizes the
need for further study on the ethical and security implications of using NLMs
for malicious purposes.
Related papers
- Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs)
As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses.
We conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes.
Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses.
arXiv Detail & Related papers (2024-11-21T06:20:29Z) - Evaluating Large Language Model based Personal Information Extraction and Countermeasures [63.91918057570824]
Large language model (LLM) can be misused by attackers to accurately extract various personal information from personal profiles.
LLM outperforms conventional methods at such extraction.
prompt injection can mitigate such risk to a large extent and outperforms conventional countermeasures.
arXiv Detail & Related papers (2024-08-14T04:49:30Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails.
By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not.
We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems.
arXiv Detail & Related papers (2024-02-28T06:28:15Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Prompted Contextual Vectors for Spear-Phishing Detection [45.07804966535239]
Spear-phishing attacks present a significant security challenge.
We propose a detection approach based on a novel document vectorization method.
Our method achieves a 91% F1 score in identifying LLM-generated spear-phishing emails.
arXiv Detail & Related papers (2024-02-13T09:12:55Z) - Detecting Scams Using Large Language Models [19.7220607313348]
Large Language Models (LLMs) have gained prominence in various applications, including security.
This paper explores the utility of LLMs in scam detection, a critical aspect of cybersecurity.
We propose a novel use case for LLMs to identify scams, such as phishing, advance fee fraud, and romance scams.
arXiv Detail & Related papers (2024-02-05T16:13:54Z) - From Chatbots to PhishBots? -- Preventing Phishing scams created using
ChatGPT, Google Bard and Claude [3.7741995290294943]
This study explores the potential of using four popular commercially available Large Language Models to generate phishing attacks.
We build a BERT-based automated detection tool that can be used for the early detection of malicious prompts.
Our model is transferable across all four commercial LLMs, attaining an average accuracy of 96% for phishing website prompts and 94% for phishing email prompts.
arXiv Detail & Related papers (2023-10-29T22:52:40Z) - Setting the Trap: Capturing and Defeating Backdoors in Pretrained
Language Models through Honeypots [68.84056762301329]
Recent research has exposed the susceptibility of pretrained language models (PLMs) to backdoor attacks.
We propose and integrate a honeypot module into the original PLM to absorb backdoor information exclusively.
Our design is motivated by the observation that lower-layer representations in PLMs carry sufficient backdoor features.
arXiv Detail & Related papers (2023-10-28T08:21:16Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.