Next-Generation Phishing: How LLM Agents Empower Cyber Attackers
- URL: http://arxiv.org/abs/2411.13874v1
- Date: Thu, 21 Nov 2024 06:20:29 GMT
- Title: Next-Generation Phishing: How LLM Agents Empower Cyber Attackers
- Authors: Khalifa Afane, Wenqi Wei, Ying Mao, Junaid Farooq, Juntao Chen,
- Abstract summary: The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs)
As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses.
We conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes.
Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses.
- Score: 10.067883724547182
- License:
- Abstract: The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs). As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses. In this study we conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes, in identifying both traditional and LLM-rephrased phishing emails. We also explore the emerging role of LLMs as phishing detection tools, a method already adopted by companies like NTT Security Holdings and JPMorgan Chase. Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses. As the threat landscape evolves, our findings underscore the need for stronger security controls and regulatory oversight on LLM-generated content to prevent its misuse in creating advanced phishing attacks. This study contributes to the development of more effective Cyber Threat Intelligence (CTI) by leveraging LLMs to generate diverse phishing variants that can be used for data augmentation, harnessing the power of LLMs to enhance phishing detection, and paving the way for more robust and adaptable threat detection systems.
Related papers
- Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models [10.58220151364159]
Phishing remains a pervasive cyber threat, as attackers craft deceptive emails to lure victims into revealing sensitive information.
While Artificial Intelligence (AI) has become a key component in defending against phishing attacks, these approaches face critical limitations.
We propose the Phishing Evolution Network (PEN), a framework leveraging large language models (LLMs) and adversarial training mechanisms to continuously generate high quality and realistic diverse phishing samples.
arXiv Detail & Related papers (2024-11-18T09:03:51Z) - APOLLO: A GPT-based tool to detect phishing emails and generate explanations that warn users [2.3618982787621]
Large Language Models (LLMs) offer significant promise for text processing in various domains.
We present APOLLO, a tool based on OpenAI's GPT-4o to detect phishing emails and generate explanation messages.
We also conducted a study with 20 participants, comparing four different explanations presented as phishing warnings.
arXiv Detail & Related papers (2024-10-10T14:53:39Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails.
By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not.
We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems.
arXiv Detail & Related papers (2024-02-28T06:28:15Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - From Chatbots to PhishBots? -- Preventing Phishing scams created using
ChatGPT, Google Bard and Claude [3.7741995290294943]
This study explores the potential of using four popular commercially available Large Language Models to generate phishing attacks.
We build a BERT-based automated detection tool that can be used for the early detection of malicious prompts.
Our model is transferable across all four commercial LLMs, attaining an average accuracy of 96% for phishing website prompts and 94% for phishing email prompts.
arXiv Detail & Related papers (2023-10-29T22:52:40Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.