Deep Recurrent Learning Through Long Short Term Memory and TOPSIS
- URL: http://arxiv.org/abs/2301.00693v2
- Date: Tue, 19 Mar 2024 16:06:19 GMT
- Title: Deep Recurrent Learning Through Long Short Term Memory and TOPSIS
- Authors: Rossi Kamal, Zuzana Kubincova, Mosaddek Hossain Kamal, Upama Kabir,
- Abstract summary: Cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP.
Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem.
Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.
Related papers
- A proof of contribution in blockchain using game theoretical deep learning model [4.53216122219986]
We introduce a game-theoretic deep learning model to reach a consensus among service providers on task scheduling and resource provisioning.
Our model reduces latency by 584% compared to the state-of-the-art.
arXiv Detail & Related papers (2024-08-25T12:40:19Z) - Swarm Learning: A Survey of Concepts, Applications, and Trends [3.55026004901472]
Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers.
Federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework.
Swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE)
SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management.
arXiv Detail & Related papers (2024-05-01T14:59:24Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
We propose a new definition of Age of Information (AoI) and, based on the redefined AoI, we formulate an online AoI problem for MEC systems.
We introduce Post-Decision States (PDSs) to exploit the partial knowledge of the system's dynamics.
We also combine PDSs with deep RL to further improve the algorithm's applicability, scalability, and robustness.
arXiv Detail & Related papers (2023-12-01T01:30:49Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
We present an end-to-end graph representation learning framework called VESPER.
VESPER is capable of training high-performance GNN models over both sparse and dense graphs under reasonable privacy budgets.
arXiv Detail & Related papers (2023-10-31T15:34:59Z) - Double Deep Q-Learning-based Path Selection and Service Placement for
Latency-Sensitive Beyond 5G Applications [11.864695986880347]
This paper studies the joint problem of communication and computing resource allocation, dubbed CCRA, to minimize total cost.
We formulate the problem as a non-linear programming model and propose two approaches, dubbed B&B-CCRA and WF-CCRA, based on the Branch & Bound and Water-Filling algorithms.
Numerical simulations show that B&B-CCRA optimally solves the problem, whereas WF-CCRA delivers near-optimal solutions in a substantially shorter time.
arXiv Detail & Related papers (2023-09-18T22:17:23Z) - Concepts and Algorithms for Agent-based Decentralized and Integrated
Scheduling of Production and Auxiliary Processes [78.120734120667]
This paper describes an agent-based decentralized and integrated scheduling approach.
Part of the requirements is to develop a linearly scaling communication architecture.
The approach is explained using an example based on industrial requirements.
arXiv Detail & Related papers (2022-05-06T18:44:29Z) - Exploring the potential of flow-based programming for machine learning
deployment in comparison with service-oriented architectures [8.677012233188968]
We argue that part of the reason is infrastructure that was not designed for activities around data collection and analysis.
We propose to consider flow-based programming with data streams as an alternative to commonly used service-oriented architectures for building software applications.
arXiv Detail & Related papers (2021-08-09T15:06:02Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
Infrastructure as a Service (I) is one of the most important and rapidly growing fields.
One of the most important aspects of cloud computing for I is resource management.
Machine learning is being used to handle a variety of resource management tasks.
arXiv Detail & Related papers (2021-05-09T08:03:58Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by projection onto bases.
Given a measure that specifies the importance of each time step in the past, HiPPO produces an optimal solution to a natural online function approximation problem.
This formal framework yields a new memory update mechanism (HiPPO-LegS) that scales through time to remember all history, avoiding priors on the timescale.
arXiv Detail & Related papers (2020-08-17T23:39:33Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.