論文の概要: G-CEALS: Gaussian Cluster Embedding in Autoencoder Latent Space for
Tabular Data Representation
- arxiv url: http://arxiv.org/abs/2301.00802v1
- Date: Mon, 2 Jan 2023 18:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 14:08:08.142899
- Title: G-CEALS: Gaussian Cluster Embedding in Autoencoder Latent Space for
Tabular Data Representation
- Title(参考訳): g-ceals: 表データ表現のためのオートエンコーダ潜在空間へのガウスクラスタ埋め込み
- Authors: Manar D. Samad and Sakib Abrar
- Abstract要約: データビジュアライゼーションのために提案された近傍埋め込みの概念に着想を得たクラスタリングアルゴリズムを用いて、t分散埋め込みを共同学習することにより、画像データのクラスタリングのために、オートエンコーダの潜時空間が改善された。
本稿では,t分布を多変量ガウスクラスタに置き換えることで,自動エンコーダ遅延空間(G-CEALS)におけるガウスクラスタ埋め込みを提案する。
学習されたG-CEALSモデルは、未確認試験データの品質埋め込みを抽出し、埋め込みクラスタリング精度に基づいて、提案したG-CEALS法の平均ランクは1.4(0.7)であり、8つのベースラインクラスタリングよりも優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The latent space of autoencoders has been improved for clustering image data
by jointly learning a t-distributed embedding with a clustering algorithm
inspired by the neighborhood embedding concept proposed for data visualization.
However, multivariate tabular data pose different challenges in representation
learning than image data, where traditional machine learning is often superior
to deep tabular data learning. In this paper, we address the challenges of
learning tabular data in contrast to image data and present a novel Gaussian
Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing
t-distributions with multivariate Gaussian clusters. Unlike current methods,
the proposed approach independently defines the Gaussian embedding and the
target cluster distribution to accommodate any clustering algorithm in
representation learning. A trained G-CEALS model extracts a quality embedding
for unseen test data. Based on the embedding clustering accuracy, the average
rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all
eight baseline clustering and cluster embedding methods on seven tabular data
sets. This paper shows one of the first algorithms to jointly learn embedding
and clustering to improve multivariate tabular data representation in
downstream clustering.
- Abstract(参考訳): データ可視化のために提案された近傍埋め込みの概念に触発されたクラスタリングアルゴリズムとt分布埋め込みを共同学習することにより、画像データのクラスタリングのためのオートエンコーダの潜在空間が改善されている。
しかし、多変量表データでは画像データとは異なる表現学習の課題が生まれ、従来の機械学習は深層表データ学習よりも優れていることが多い。
本稿では,画像データとは対照的に表データ学習の課題に対処し,t分布を多変量ガウスクラスターに置き換え,オートエンコーダ潜在空間(g-ceals)に埋め込みた新しいガウスクラスタを提案する。
現在の手法とは異なり、提案手法は表現学習において任意のクラスタリングアルゴリズムに対応するため、ガウス埋め込みと対象クラスタ分布を独立に定義する。
トレーニングされたG-CEALSモデルは、見えないテストデータに対する品質埋め込みを抽出する。
埋め込みクラスタリングの精度に基づき,提案手法の平均ランクは1.4 (0.7)であり,全8基クラスタリング法と7つの表付きデータセット上のクラスタ埋め込み法より優れている。
本稿では,ダウンストリームクラスタリングにおける多変量表データ表現を改善するために,組込みとクラスタリングを共同で学習する最初のアルゴリズムの1つを示す。
関連論文リスト
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Confident Clustering via PCA Compression Ratio and Its Application to
Single-cell RNA-seq Analysis [4.511561231517167]
我々は,境界データポイントの影響を小さくするために,信頼度の高いクラスタリング手法を開発した。
本アルゴリズムは単一セルRNA-seqデータを用いて検証する。
単一セル解析における従来のクラスタリング法とは異なり、信頼性クラスタリングはパラメータの異なる選択下で高い安定性を示す。
論文 参考訳(メタデータ) (2022-05-19T20:46:49Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Deep Robust Clustering by Contrastive Learning [31.161207608881472]
本稿では,非競合データを用いたクラスタリング学習のために,Deep Robust Clustering (DRC)を提案する。
DRCは、セマンティッククラスタリングの割り当てと表現機能の両方の観点から、ディープクラスタリングを考察している。
広く採用されている6つのディープクラスタリングベンチマークの実験は、安定性と精度の両方においてDRCの優位性を示している。
論文 参考訳(メタデータ) (2020-08-07T08:05:53Z) - Supervised Enhanced Soft Subspace Clustering (SESSC) for TSK Fuzzy
Classifiers [25.32478253796209]
ファジィc平均クラスタリングアルゴリズムは,高木・スゲノカン(TSK)ファジィ分類器パラメータ推定によく用いられる。
本稿では,クラスタ内コンパクト性,クラスタ間分離,クラスタリングにおけるラベル情報とを同時に考慮した拡張ソフトサブスペースクラスタリング(SESSC)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-27T19:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。