論文の概要: Multidimensional Item Response Theory in the Style of Collaborative
Filtering
- arxiv url: http://arxiv.org/abs/2301.00909v1
- Date: Tue, 3 Jan 2023 00:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 14:14:36.782594
- Title: Multidimensional Item Response Theory in the Style of Collaborative
Filtering
- Title(参考訳): 協調フィルタリング方式における多次元項目応答理論
- Authors: Yoav Bergner, Peter F. Halpin, Jill-J\^enn Vie
- Abstract要約: 本稿では,多次元項目応答理論(MIRT)に対する機械学習手法を提案する。
協調フィルタリングに触発されて、多くのMIRTモデルを含むモデルの一般的なクラスを定義します。
本稿では, 個人モデルとクロスバリデーションを推定し, 最適動作モデルを選択するために, ペナル化結合最大度(JML)の使用について論じる。
- 参考スコア(独自算出の注目度): 0.8057006406834467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a machine learning approach to multidimensional item
response theory (MIRT), a class of latent factor models that can be used to
model and predict student performance from observed assessment data. Inspired
by collaborative filtering, we define a general class of models that includes
many MIRT models. We discuss the use of penalized joint maximum likelihood
(JML) to estimate individual models and cross-validation to select the best
performing model. This model evaluation process can be optimized using batching
techniques, such that even sparse large-scale data can be analyzed efficiently.
We illustrate our approach with simulated and real data, including an example
from a massive open online course (MOOC). The high-dimensional model fit to
this large and sparse dataset does not lend itself well to traditional methods
of factor interpretation. By analogy to recommender-system applications, we
propose an alternative "validation" of the factor model, using auxiliary
information about the popularity of items consulted during an open-book exam in
the course.
- Abstract(参考訳): 本稿では,多次元項目応答理論(MIRT)に対する機械学習手法を提案する。
協調フィルタリングに触発されて、多くのMIRTモデルを含むモデルの一般的なクラスを定義します。
本稿では, 個人モデルとクロスバリデーションを推定し, 最高の性能モデルを選択するために, ペナルティ付き関節最大度(JML)の使用について論じる。
このモデル評価プロセスは、大規模データのスパースを効率的に分析できるように、バッチ技術を用いて最適化することができる。
シミュレーションと実データを用いて,大規模オープンオンラインコース(mooc)の例を含め,我々のアプローチを例示する。
この巨大でスパースなデータセットに適合する高次元モデルは、従来の因子解釈の方法には適していない。
推薦システムアプリケーションに類似して,本コースのオープンブック試験において紹介された項目の人気に関する補助情報を用いて,因子モデルの代替「検証」を提案する。
関連論文リスト
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Finding Materialized Models for Model Reuse [20.97918143614477]
物質化モデルクエリは、モデル再利用の初期モデルとして最も適切な物質化モデルを見つけることを目的としている。
提案するTextsfMMQは,オープンソースフリーで,汎用的で,効率的で,効果的なモデルクエリフレームワークである。
実用的なモデル再利用ワークロードの実験では、textsfMMQの有効性と効率が示されている。
論文 参考訳(メタデータ) (2021-10-13T06:55:44Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
協調フィルタリング(CF)はレコメンダシステムの基本的なアプローチである。
本稿では,機械学習(AutoML)の最近の進歩を動機として,データ固有のCFモデルを設計することを提案する。
ここでキーとなるのは、最先端(SOTA)のCFメソッドを統一し、それらを入力エンコーディング、埋め込み関数、インタラクション、予測関数の非結合ステージに分割する新しいフレームワークである。
論文 参考訳(メタデータ) (2021-06-14T14:30:32Z) - Multitarget Tracking with Transformers [21.81266872964314]
マルチターゲットトラッキング(MTT)は、ノイズの多い測定を使用して未知のオブジェクトの数の状態を追跡する問題です。
本稿では,Transformer アーキテクチャに基づく MTT の高性能深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-01T19:14:55Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
この手法はGPComp@Freeと呼ばれるモデル設計のためのパラメータフリーな遺伝的アルゴリズムに基づいている。
実験結果から, モデル設計に対する多目的アプローチにより, 得られたモデルの多様性と品質が向上することが確認された。
論文 参考訳(メタデータ) (2021-03-01T20:45:24Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。