Assessment of creditworthiness models privacy-preserving training with
synthetic data
- URL: http://arxiv.org/abs/2301.01212v1
- Date: Sat, 31 Dec 2022 19:13:14 GMT
- Title: Assessment of creditworthiness models privacy-preserving training with
synthetic data
- Authors: Ricardo Mu\~noz-Cancino and Cristi\'an Bravo and Sebasti\'an A. R\'ios
and Manuel Gra\~na
- Abstract summary: We evaluate the performance of models trained with synthetic data when applied to real-world data.
creditworthiness assessment models trained with synthetic data show a reduction of 3% of AUC and 6% of KS when compared with models trained with real data.
- Score: 4.014524824655106
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Credit scoring models are the primary instrument used by financial
institutions to manage credit risk. The scarcity of research on behavioral
scoring is due to the difficult data access. Financial institutions have to
maintain the privacy and security of borrowers' information refrain them from
collaborating in research initiatives. In this work, we present a methodology
that allows us to evaluate the performance of models trained with synthetic
data when they are applied to real-world data. Our results show that synthetic
data quality is increasingly poor when the number of attributes increases.
However, creditworthiness assessment models trained with synthetic data show a
reduction of 3\% of AUC and 6\% of KS when compared with models trained with
real data. These results have a significant impact since they encourage credit
risk investigation from synthetic data, making it possible to maintain
borrowers' privacy and to address problems that until now have been hampered by
the availability of information.
Related papers
- Empirical Privacy Evaluations of Generative and Predictive Machine Learning Models -- A review and challenges for practice [0.3069335774032178]
It is crucial to empirically assess the privacy risks associated with the generated synthetic data before deploying generative technologies.
This paper outlines the key concepts and assumptions underlying empirical privacy evaluation in machine learning-based generative and predictive models.
arXiv Detail & Related papers (2024-11-19T12:19:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models [3.672850225066168]
generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data.
Despite the potential benefits, concerns regarding privacy leakage have surfaced.
We introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data.
arXiv Detail & Related papers (2024-04-20T08:08:28Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
This paper investigates the policies governing the creation, utilization, and dissemination of synthetic data.
A well crafted synthetic data policy must strike a balance between privacy concerns and the utility of data.
arXiv Detail & Related papers (2023-08-31T23:18:53Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Measuring Utility and Privacy of Synthetic Genomic Data [3.635321290763711]
We provide the first evaluation of the utility and the privacy protection of five state-of-the-art models for generating synthetic genomic data.
Overall, there is no single approach for generating synthetic genomic data that performs well across the board.
arXiv Detail & Related papers (2021-02-05T17:41:01Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.