Task Weighting in Meta-learning with Trajectory Optimisation
- URL: http://arxiv.org/abs/2301.01400v1
- Date: Wed, 4 Jan 2023 01:36:09 GMT
- Title: Task Weighting in Meta-learning with Trajectory Optimisation
- Authors: Cuong Nguyen, Thanh-Toan Do, Gustavo Carneiro
- Abstract summary: We introduce a new principled and fully-automated task-weighting algorithm for meta-learning methods.
By considering the weights of tasks within the same mini-batch as an action, we cast the task-weighting meta-learning problem to a trajectory optimisation.
We empirically demonstrate that the proposed approach out-performs common hand-engineering weighting methods in two few-shot learning benchmarks.
- Score: 37.32107678838193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing meta-learning algorithms that are un-biased toward a subset of
training tasks often requires hand-designed criteria to weight tasks,
potentially resulting in sub-optimal solutions. In this paper, we introduce a
new principled and fully-automated task-weighting algorithm for meta-learning
methods. By considering the weights of tasks within the same mini-batch as an
action, and the meta-parameter of interest as the system state, we cast the
task-weighting meta-learning problem to a trajectory optimisation and employ
the iterative linear quadratic regulator to determine the optimal action or
weights of tasks. We theoretically show that the proposed algorithm converges
to an $\epsilon_{0}$-stationary point, and empirically demonstrate that the
proposed approach out-performs common hand-engineering weighting methods in two
few-shot learning benchmarks.
Related papers
- Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
We propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments.
We first propose two simple but effective detection mechanisms of task switches and distribution shift.
We show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions.
arXiv Detail & Related papers (2023-02-02T04:02:49Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - Multi-Task Meta-Learning Modification with Stochastic Approximation [0.7734726150561089]
A few-shot learning problem is one of the main benchmarks of meta-learning algorithms.
In this paper we investigate the modification of standard meta-learning pipeline that takes a multi-task approach during training.
The proposed method simultaneously utilizes information from several meta-training tasks in a common loss function.
Proper optimization of these weights can have a big influence on training of the entire model and might improve the quality on test time tasks.
arXiv Detail & Related papers (2021-10-25T18:11:49Z) - Learning-to-learn non-convex piecewise-Lipschitz functions [44.6133187924678]
We analyze the meta-learning of the algorithms for piecewise-Lipschitz functions, a non-task with applications to both machine learning algorithms.
We propose a practical meta-learning procedure that learns both the step-size of the algorithm from multiple online learning tasks.
arXiv Detail & Related papers (2021-08-19T16:22:48Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Submodular Meta-Learning [43.15332631500541]
We introduce a discrete variant of the meta-learning framework to improve performance on future tasks.
Our approach aims at using prior data, i.e., previously visited tasks, to train a proper initial solution set.
We show that our framework leads to a significant reduction in computational complexity in solving the new tasks while incurring a small performance loss.
arXiv Detail & Related papers (2020-07-11T21:02:48Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - PAC-Bayes meta-learning with implicit task-specific posteriors [37.32107678838193]
We introduce a new and rigorously-formulated PAC-Bayes meta-learning algorithm that solves few-shot learning.
We show that the models trained with our proposed meta-learning algorithm are well calibrated and accurate.
arXiv Detail & Related papers (2020-03-05T06:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.