論文の概要: On Fairness of Medical Image Classification with Multiple Sensitive
Attributes via Learning Orthogonal Representations
- arxiv url: http://arxiv.org/abs/2301.01481v1
- Date: Wed, 4 Jan 2023 08:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 15:32:51.133336
- Title: On Fairness of Medical Image Classification with Multiple Sensitive
Attributes via Learning Orthogonal Representations
- Title(参考訳): 学習直交表現による多感性属性を用いた医用画像分類の公平性について
- Authors: Wenlong Deng, Yuan Zhong, Qi Dou, Xiaoxiao Li
- Abstract要約: 本稿では,多感性属性に対する公正表現学習のための新しい手法を提案する。
提案手法の有効性は,CheXpertデータセット上での実験により実証された。
- 参考スコア(独自算出の注目度): 29.703978958553247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating the discrimination of machine learning models has gained
increasing attention in medical image analysis. However, rare works focus on
fair treatments for patients with multiple sensitive demographic ones, which is
a crucial yet challenging problem for real-world clinical applications. In this
paper, we propose a novel method for fair representation learning with respect
to multi-sensitive attributes. We pursue the independence between target and
multi-sensitive representations by achieving orthogonality in the
representation space. Concretely, we enforce the column space orthogonality by
keeping target information on the complement of a low-rank sensitive space.
Furthermore, in the row space, we encourage feature dimensions between target
and sensitive representations to be orthogonal. The effectiveness of the
proposed method is demonstrated with extensive experiments on the CheXpert
dataset. To our best knowledge, this is the first work to mitigate unfairness
with respect to multiple sensitive attributes in the field of medical imaging.
- Abstract(参考訳): 医療画像解析において,機械学習モデルの識別の緩和が注目されている。
しかし、稀な研究は、複数のセンシティブな人口動態を持つ患者に対する公平な治療に焦点を当てており、これは現実の臨床応用にとって非常に難しい問題である。
本稿では,マルチセンシティブ属性に対する公平表現学習のための新しい手法を提案する。
表現空間における直交性を達成することにより,対象表現と多感表現の独立性を追求する。
具体的には,コラム空間の直交性は,低ランク感性空間の補数に対する目標情報を保持することによって行う。
さらに、行空間では、ターゲットと感度表現の間の特徴次元が直交することを奨励する。
提案手法の有効性は,CheXpertデータセット上での実験により実証された。
我々の知る限り、医療画像の分野では、複数の感度特性に関して不公平を緩和する最初の試みである。
関連論文リスト
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning [26.425784890859738]
MaCoは、マスク付きコントラスト型胸部X線基礎モデルである。
様々な医療画像のタスクに対して、きめ細かい画像理解とゼロショット学習を同時に達成する。
分類、セグメンテーション、検出、句接地といったタスクにまたがる、最先端の10のアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-12T01:29:37Z) - Graph Self-Supervised Learning for Endoscopic Image Matching [1.8275108630751844]
鍵点間の空間関係をモデル化するために,局所的な視覚的外観を捉える畳み込みニューラルネットワークと注目に基づくグラフニューラルネットワークを組み合わせた,新たな自己教師型アプローチを提案する。
我々のアプローチはラベル付きデータを必要とせず、完全に自己管理されたスキームで訓練されている。
提案手法は,最先端の手工法と深層学習法より優れ,精度(1)とマッチングスコア(99.3%)で優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:53:41Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - CAiD: Context-Aware Instance Discrimination for Self-supervised Learning
in Medical Imaging [7.137224324997715]
コンテキスト対応インスタンス識別(CAiD)は、医療画像におけるインスタンス識別学習を改善することを目的としている。
CAiDは、様々なローカルコンテキストから符号化された、より細分化した情報を提供する。
オープンサイエンスとして、すべてのコードと事前トレーニングされたモデルは、GitHubのページで利用可能です。
論文 参考訳(メタデータ) (2022-04-15T06:45:10Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Few-shot image segmentation for cross-institution male pelvic organs
using registration-assisted prototypical learning [13.567073992605797]
本研究は,医用画像のための最初の3D画像間セグメンテーションネットワークを提案する。
興味のある8つの領域を持つ前立腺がん患者のラベル付き多施設データセットを使用する。
内蔵登録機構は、被験者間の一貫性のある解剖学の事前知識を効果的に活用することができる。
論文 参考訳(メタデータ) (2022-01-17T11:44:10Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。