Fully Automated Artery-Vein ratio and vascular tortuosity measurement in
retinal fundus images
- URL: http://arxiv.org/abs/2301.01791v1
- Date: Wed, 4 Jan 2023 19:13:21 GMT
- Title: Fully Automated Artery-Vein ratio and vascular tortuosity measurement in
retinal fundus images
- Authors: Aashis Khanal, Rolando Estrada
- Abstract summary: This paper is a follow-up paper on vessel topology estimation and extraction.
We use the extracted topology to perform A-V state-of-the-art Artery-Vein classification, AV ratio calculation, and vessel tortuosity measurement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate measurements of abnormalities like Artery-Vein ratio and tortuosity
in fundus images is an actively researched task. Most of the research seems to
compute such features independently. However, in this work, we have devised a
fully automated technique to measure any vascular abnormalities. This paper is
a follow-up paper on vessel topology estimation and extraction, we use the
extracted topology to perform A-V state-of-the-art Artery-Vein classification,
AV ratio calculation, and vessel tortuosity measurement, all fully automated.
Existing techniques tend to only work on the partial region, but we extract the
complete vascular structure. We have shown the usability of this topology by
extracting two of the most important vascular features; Artery-Vein ratio, and
vessel tortuosity.
Related papers
- TransONet: Automatic Segmentation of Vasculature in Computed Tomographic
Angiograms Using Deep Learning [0.08376229126363229]
We propose a deep learning model to segment the vascular system in images of patients undergoing surgery for peripheral arterial disease (PAD)
Our study focused on accurately segmenting the vascular system (1) from the descending thoracic aorta to the iliac bifurcation and (2) from the descending thoracic aorta to the knees in CTA images using deep learning techniques.
arXiv Detail & Related papers (2023-11-17T04:59:08Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
We present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels.
Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal plexuses and 2) a suite of physics-based image augmentations.
arXiv Detail & Related papers (2022-07-22T14:22:22Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - Fully Automated Tree Topology Estimation and Artery-Vein Classification [0.0]
We present a fully automatic technique for extracting the retinal vascular topology, i.e., how the different vessels are connected to each other, given a single color fundus image.
We validated the usefulness of our extraction method by using it to achieve state-of-the-art results in retinal artery-vein classification.
arXiv Detail & Related papers (2022-02-04T20:40:01Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
The aortic vessel tree is composed of the aorta and its branching arteries.
We systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree.
arXiv Detail & Related papers (2021-08-06T08:18:28Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.