t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation
- URL: http://arxiv.org/abs/2301.01829v4
- Date: Tue, 21 May 2024 02:19:13 GMT
- Title: t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation
- Authors: Juan-Ni Wu, Tong Wang, Yue Chen, Li-Juan Tang, Hai-Long Wu, Ru-Qin Yu,
- Abstract summary: This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES.
It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph.
It significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks.
- Score: 9.116670221263753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective representation of molecules is a crucial factor affecting the performance of artificial intelligence models. This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES (tree-based SMILES) with three code algorithms: TSSA, TSDY and TSID. It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph. Systematic evaluations using JTVAE, BRICS, MMPA, and Scaffold show the feasibility of constructing a multi-code molecular description system, where various descriptions complement each other, enhancing the overall performance. In addition, it can avoid overfitting and achieve higher novelty scores while maintaining reasonable similarity on labeled low-resource datasets, regardless of whether the model is original, data-augmented, or pre-trained then fine-tuned. Furthermore, it significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks. And it surpasses state-of-the-art fragment, graph and SMILES based approaches on ChEMBL, Zinc, and QM9.
Related papers
- DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMS is a formula-restricted encoder-decoder generative network.
We develop a robust decoder that bridges latent embeddings and molecular structures.
Experiments show DiffMS outperforms existing models on $textitde novo$ molecule generation.
arXiv Detail & Related papers (2025-02-13T18:29:48Z) - Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints [28.262593876388397]
In-context learning (ICL) conditions large language models (LLMs) for molecular tasks, such as property prediction and molecule captioning, by embedding carefully selected demonstration examples into the input prompt.
However, current prompt retrieval methods for molecular tasks have relied on molecule feature similarity, such as Morgan fingerprints, which do not adequately capture the global molecular and atom-binding relationships.
We propose a self-supervised learning technique, GAMIC, which aligns global molecular structures, represented by graph neural networks (GNNs), with textual captions (descriptions) while leveraging local feature similarity through Morgan fingerprints.
arXiv Detail & Related papers (2025-02-08T02:46:33Z) - RFL: Simplifying Chemical Structure Recognition with Ring-Free Language [66.47173094346115]
We propose a novel Ring-Free Language (RFL) to describe chemical structures in a hierarchical form.
RFL allows complex molecular structures to be decomposed into multiple parts, ensuring both uniqueness and conciseness.
We propose a universal Molecular Skeleton Decoder (MSD), which comprises a skeleton generation module that progressively predicts the molecular skeleton and individual rings.
arXiv Detail & Related papers (2024-12-10T15:29:32Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Adapting Differential Molecular Representation with Hierarchical Prompts for Multi-label Property Prediction [2.344198904343022]
HiPM stands for hierarchical prompted molecular representation learning framework.
Our framework comprises two core components: the Molecular Representation (MRE) and the Task-Aware Prompter (TAP)
arXiv Detail & Related papers (2024-05-29T03:10:21Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.
Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.
By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.