Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints
- URL: http://arxiv.org/abs/2502.05414v1
- Date: Sat, 08 Feb 2025 02:46:33 GMT
- Title: Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints
- Authors: Ali Al-Lawati, Jason Lucas, Zhiwei Zhang, Prasenjit Mitra, Suhang Wang,
- Abstract summary: In-context learning (ICL) conditions large language models (LLMs) for molecular tasks, such as property prediction and molecule captioning, by embedding carefully selected demonstration examples into the input prompt.
However, current prompt retrieval methods for molecular tasks have relied on molecule feature similarity, such as Morgan fingerprints, which do not adequately capture the global molecular and atom-binding relationships.
We propose a self-supervised learning technique, GAMIC, which aligns global molecular structures, represented by graph neural networks (GNNs), with textual captions (descriptions) while leveraging local feature similarity through Morgan fingerprints.
- Score: 28.262593876388397
- License:
- Abstract: In-context learning (ICL) effectively conditions large language models (LLMs) for molecular tasks, such as property prediction and molecule captioning, by embedding carefully selected demonstration examples into the input prompt. This approach avoids the computational overhead of extensive pertaining and fine-tuning. However, current prompt retrieval methods for molecular tasks have relied on molecule feature similarity, such as Morgan fingerprints, which do not adequately capture the global molecular and atom-binding relationships. As a result, these methods fail to represent the full complexity of molecular structures during inference. Moreover, small-to-medium-sized LLMs, which offer simpler deployment requirements in specialized systems, have remained largely unexplored in the molecular ICL literature. To address these gaps, we propose a self-supervised learning technique, GAMIC (Graph-Aligned Molecular In-Context learning, which aligns global molecular structures, represented by graph neural networks (GNNs), with textual captions (descriptions) while leveraging local feature similarity through Morgan fingerprints. In addition, we introduce a Maximum Marginal Relevance (MMR) based diversity heuristic during retrieval to optimize input prompt demonstration samples. Our experimental findings using diverse benchmark datasets show GAMIC outperforms simple Morgan-based ICL retrieval methods across all tasks by up to 45%.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation [9.116670221263753]
This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES.
It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph.
It significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks.
arXiv Detail & Related papers (2023-01-04T21:41:01Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.