Learning Personalized Brain Functional Connectivity of MDD Patients from
Multiple Sites via Federated Bayesian Networks
- URL: http://arxiv.org/abs/2301.02423v1
- Date: Fri, 6 Jan 2023 08:58:06 GMT
- Title: Learning Personalized Brain Functional Connectivity of MDD Patients from
Multiple Sites via Federated Bayesian Networks
- Authors: Shuai Liu, Xiao Guo, Shun Qi, Huaning Wang and Xiangyu Chang
- Abstract summary: We propose a federated joint estimator, NOTEARS-PFL, for simultaneous learning of multiple Bayesian networks.
We evaluate the performance of the proposed method on both synthetic and real-world multi-site rs-fMRI datasets.
- Score: 9.873532358701803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying functional connectivity biomarkers of major depressive disorder
(MDD) patients is essential to advance understanding of the disorder mechanisms
and early intervention. However, due to the small sample size and the high
dimension of available neuroimaging data, the performance of existing methods
is often limited. Multi-site data could enhance the statistical power and
sample size, while they are often subject to inter-site heterogeneity and
data-sharing policies. In this paper, we propose a federated joint estimator,
NOTEARS-PFL, for simultaneous learning of multiple Bayesian networks (BNs) with
continuous optimization, to identify disease-induced alterations in MDD
patients. We incorporate information shared between sites and site-specific
information into the proposed federated learning framework to learn
personalized BN structures by introducing the group fused lasso penalty. We
develop the alternating direction method of multipliers, where in the local
update step, the neuroimaging data is processed at each local site. Then the
learned network structures are transmitted to the center for the global update.
In particular, we derive a closed-form expression for the local update step and
use the iterative proximal projection method to deal with the group fused lasso
penalty in the global update step. We evaluate the performance of the proposed
method on both synthetic and real-world multi-site rs-fMRI datasets. The
results suggest that the proposed NOTEARS-PFL yields superior effectiveness and
accuracy than the comparable methods.
Related papers
- FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
We introduce FedMRL, a novel multi-agent deep reinforcement learning framework designed to address data heterogeneity.
FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model.
We assess our approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-07-08T10:10:07Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) is a learning framework that trains multiple single-modal feature extractors to enhance subsequent classification performance.
FedMM notably outperforms two baselines in accuracy and AUC metrics.
arXiv Detail & Related papers (2024-02-24T16:58:42Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Learning Federated Visual Prompt in Null Space for MRI Reconstruction [83.71117888610547]
We propose a new algorithm, FedPR, to learn federated visual prompts in the null space of global prompt for MRI reconstruction.
FedPR significantly outperforms state-of-the-art FL algorithms with 6% of communication costs when given the limited amount of local training data.
arXiv Detail & Related papers (2023-03-28T17:46:16Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data.
Recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis.
We present a decentralized distributed method that integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy.
arXiv Detail & Related papers (2022-06-20T23:49:38Z) - Federated Offline Reinforcement Learning [55.326673977320574]
We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
arXiv Detail & Related papers (2022-06-11T18:03:26Z) - FedDKD: Federated Learning with Decentralized Knowledge Distillation [3.9084449541022055]
We propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD)
We show that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps.
arXiv Detail & Related papers (2022-05-02T07:54:07Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.