GNN-based Passenger Request Prediction
- URL: http://arxiv.org/abs/2301.02515v2
- Date: Thu, 25 Jan 2024 05:41:47 GMT
- Title: GNN-based Passenger Request Prediction
- Authors: Aqsa Ashraf Makhdomi and Iqra Altaf Gillani
- Abstract summary: This paper develops a Graph Neural Network framework along with the Attention Mechanism to predict the Origin-Destination (OD) flow of passengers.
The proposed framework exploits various linear and non-linear dependencies that arise among requests originating from different locations.
The optimal size of the grid cell that covers the road network preserves the complexity and accuracy of the model.
- Score: 0.3480973072524161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Passenger request prediction is essential for operations planning, control,
and management in ride-sharing platforms. While the demand prediction problem
has been studied extensively, the Origin-Destination (OD) flow prediction of
passengers has received less attention from the research community. This paper
develops a Graph Neural Network framework along with the Attention Mechanism to
predict the OD flow of passengers. The proposed framework exploits various
linear and non-linear dependencies that arise among requests originating from
different locations and captures the repetition pattern and the contextual data
of that place. Moreover, the optimal size of the grid cell that covers the road
network and preserves the complexity and accuracy of the model is determined.
Extensive simulations are conducted to examine the characteristics of our
proposed approach and its various components. The results show the superior
performance of our proposed model compared to the existing baselines.
Related papers
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
Navigating complex traffic environments has been significantly enhanced by advancements in intelligent technologies, enabling accurate environment perception and trajectory prediction for automated vehicles.
Existing research often neglects the consideration of the joint reasoning of scenario agents and lacks interpretability in trajectory prediction models.
An explainability-oriented trajectory prediction model is designed in this work, named Explainable Diffusion Conditional based Multimodal Trajectory Prediction Traj-Explainer.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing [1.0312968200748118]
Ridesharing has received global popularity due to its convenience and cost efficiency for both drivers and passengers.
The goal of the RSODP (Origin-Destination Prediction for Ridesharing) problem is to predict the future ridesharing requests and provide schedules for vehicles ahead of time.
Most of existing prediction models utilise Deep Learning, however they fail to effectively consider both spatial and temporal dynamics.
arXiv Detail & Related papers (2022-07-11T08:41:24Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
Origin-Destination Estimation plays an important role in traffic management and traffic simulation in the era of Intelligent Transportation System (ITS)
Previous model-based models face the under-determined challenge, thus desperate demand for additional assumptions and extra data exists.
We propose Cyclic Graph Attentive Matching (C-GAME) based on a novel Graph Matcher with double-layer attention mechanism.
arXiv Detail & Related papers (2021-11-26T08:57:21Z) - Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts
for Inventory Management [8.441020454345932]
We introduce a variational Poisson recurrent neural network model (VP-RNN) to forecast future pickup and return rates.
We empirically evaluate our approach against both traditional and learning-based forecasting methods on real trip travel data from the city of New York, USA.
arXiv Detail & Related papers (2021-07-28T14:11:34Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - DSDNet: Deep Structured self-Driving Network [92.9456652486422]
We propose the Deep Structured self-Driving Network (DSDNet), which performs object detection, motion prediction, and motion planning with a single neural network.
We develop a deep structured energy based model which considers the interactions between actors and produces socially consistent multimodal future predictions.
arXiv Detail & Related papers (2020-08-13T17:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.