A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing
- URL: http://arxiv.org/abs/2207.04709v1
- Date: Mon, 11 Jul 2022 08:41:24 GMT
- Title: A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing
- Authors: Jingran Shen, Nikos Tziritas and Georgios Theodoropoulos
- Abstract summary: Ridesharing has received global popularity due to its convenience and cost efficiency for both drivers and passengers.
The goal of the RSODP (Origin-Destination Prediction for Ridesharing) problem is to predict the future ridesharing requests and provide schedules for vehicles ahead of time.
Most of existing prediction models utilise Deep Learning, however they fail to effectively consider both spatial and temporal dynamics.
- Score: 1.0312968200748118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ridesharing has received global popularity due to its convenience and cost
efficiency for both drivers and passengers and its strong potential to
contribute to the implementation of the UN Sustainable Development Goals. As a
result recent years have witnessed an explosion of research interest in the
RSODP (Origin-Destination Prediction for Ridesharing) problem with the goal of
predicting the future ridesharing requests and providing schedules for vehicles
ahead of time. Most of existing prediction models utilise Deep Learning,
however they fail to effectively consider both spatial and temporal dynamics.
In this paper the Baselined Gated Attention Recurrent Network (BGARN), is
proposed, which uses graph convolution with multi-head gated attention to
extract spatial features, a recurrent module to extract temporal features, and
a baselined transferring layer to calculate the final results. The model is
implemented with PyTorch and DGL (Deep Graph Library) and is experimentally
evaluated using the New York Taxi Demand Dataset. The results show that BGARN
outperforms all the other existing models in terms of prediction accuracy.
Related papers
- Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - GNN-based Passenger Request Prediction [0.3480973072524161]
This paper develops a Graph Neural Network framework along with the Attention Mechanism to predict the Origin-Destination (OD) flow of passengers.
The proposed framework exploits various linear and non-linear dependencies that arise among requests originating from different locations.
The optimal size of the grid cell that covers the road network preserves the complexity and accuracy of the model.
arXiv Detail & Related papers (2023-01-06T14:04:46Z) - Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting [4.295541562380963]
The NeurIPS 2022 Traffic4cast challenge is dedicated to predicting the citywide traffic states with publicly available sparse loop count data.
This technical report introduces our second-place winning solution to the extended challenge of ETA prediction.
arXiv Detail & Related papers (2022-11-13T22:19:21Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Real-Time Forecasting of Dockless Scooter-Sharing Demand: A
Spatio-Temporal Multi-Graph Transformer Approach [5.6973480878880824]
This paper proposes a novel deep learning architecture named S-Temporal Multi-Graph Transformer (S-TMGT) to forecast real-time dockless scooter-sharing demand.
The proposed model can help the micromobility operators develop optimal vehicle rebalancing schemes and guide cities to better manage dockless scooter-sharing operations.
arXiv Detail & Related papers (2021-11-02T03:48:48Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.