Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models
- URL: http://arxiv.org/abs/2209.08763v3
- Date: Wed, 16 Apr 2025 16:12:59 GMT
- Title: Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models
- Authors: Fangyu Wu, Dequan Wang, Minjune Hwang, Chenhui Hao, Jiawei Lu, Jiamu Zhang, Christopher Chou, Trevor Darrell, Alexandre Bayen,
- Abstract summary: We present a novel dataset and modeling framework designed to study motion planning in understructured environments.<n>We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset.
- Score: 76.32775745488073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant portion of roads, particularly in densely populated developing countries, lacks explicitly defined right-of-way rules. These understructured roads pose substantial challenges for autonomous vehicle motion planning, where efficient and safe navigation relies on understanding decentralized human coordination for collision avoidance. This coordination, often termed "social driving etiquette," remains underexplored due to limited open-source empirical data and suitable modeling frameworks. In this paper, we present a novel dataset and modeling framework designed to study motion planning in these understructured environments. The dataset includes 20 aerial videos of representative scenarios, an image dataset for training vehicle detection models, and a development kit for vehicle trajectory estimation. We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset, and is therefore a viable framework for decentralized collision avoidance planning.
Related papers
- INTENT: Trajectory Prediction Framework with Intention-Guided Contrastive Clustering [13.079901321614937]
In this study, we advocate that understanding and reasoning road agents' intention plays a key role in trajectory prediction tasks.
We present an efficient intention-guided trajectory prediction model that relies solely on information contained in the road agent's trajectory.
arXiv Detail & Related papers (2025-03-06T20:31:11Z) - MSMA: Multi-agent Trajectory Prediction in Connected and Autonomous Vehicle Environment with Multi-source Data Integration [4.2371435508360085]
In this study, we focus on a scenario where a connected and autonomous vehicle (CAV) serves as the central agent.
Our trajectory prediction task is aimed at all the detected surrounding vehicles.
To effectively integrate the multi-source data from both sensor and communication technologies, we propose a deep learning framework called MSMA.
arXiv Detail & Related papers (2024-07-31T03:26:14Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
We propose a novel collaborative 3D object detection framework that consists of three components.
Experiment results and bandwidth usage analysis demonstrate that our approach can save communication and computation costs.
arXiv Detail & Related papers (2022-05-24T07:17:32Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
We propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously.
The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions.
arXiv Detail & Related papers (2022-04-12T03:57:01Z) - RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics [9.267045415696263]
We propose a new traffic model, Recurrent Traffic Graph Neural Network (RTGNN)
RTGNN is a Markovian model and is able to infer future traffic states conditioned on the motion of the ego vehicle.
We explicitly model the hidden states of agents, "intentions," as part of the traffic state to reflect the inherent partial observability of traffic dynamics.
arXiv Detail & Related papers (2022-02-21T03:55:00Z) - Multi-modal Scene-compliant User Intention Estimation for Navigation [1.9117798322548485]
A framework to generated user intention distributions when operating a mobile vehicle is proposed in this work.
The model learns from past observed trajectories and leverages traversability information derived from the visual surroundings.
Experiments were conducted on a dataset collected with a custom wheelchair model built onto the open-source urban driving simulator CARLA.
arXiv Detail & Related papers (2021-06-13T05:11:33Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Open-set Intersection Intention Prediction for Autonomous Driving [9.494867137826397]
We formulate the prediction of intention at intersections as an open-set prediction problem.
We capture map-centric features that correspond to intersection structures under a spatial-temporal graph representation.
We use two MAAMs (mutually auxiliary attention module) to predict a target that best matches intersection elements in map-centric feature space.
arXiv Detail & Related papers (2021-02-27T06:38:26Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - The NEOLIX Open Dataset for Autonomous Driving [1.4091801425319965]
We present the NEOLIX dataset and its applica-tions in the autonomous driving area.
Our dataset includes about 30,000 frames with point cloud la-bels, and more than 600k 3D bounding boxes withannotations.
arXiv Detail & Related papers (2020-11-27T02:27:39Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
We present a cooperative perception scheme with deep reinforcement learning to enhance the detection accuracy for the surrounding objects.
Our scheme mitigates the network load in vehicular communication networks and enhances the communication reliability.
arXiv Detail & Related papers (2020-04-23T01:44:12Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.