Adaptive variational quantum minimally entangled typical thermal states
for finite temperature simulations
- URL: http://arxiv.org/abs/2301.02592v3
- Date: Fri, 4 Aug 2023 16:33:11 GMT
- Title: Adaptive variational quantum minimally entangled typical thermal states
for finite temperature simulations
- Authors: Jo\~ao C. Getelina, Niladri Gomes, Thomas Iadecola, Peter P. Orth,
Yong-Xin Yao
- Abstract summary: We describe and benchmark a quantum computing version of the minimally entangled typical thermal states (METTS) algorithm.
The algorithm, which we name AVQMETTS, dynamically generates compact and problem-specific quantum circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scalable quantum algorithms for the simulation of quantum many-body systems
in thermal equilibrium are important for predicting properties of quantum
matter at finite temperatures. Here we describe and benchmark a quantum
computing version of the minimally entangled typical thermal states (METTS)
algorithm for which we adopt an adaptive variational approach to perform the
required quantum imaginary time evolution. The algorithm, which we name
AVQMETTS, dynamically generates compact and problem-specific quantum circuits,
which are suitable for noisy intermediate-scale quantum (NISQ) hardware. We
benchmark AVQMETTS on statevector simulators and perform thermal energy
calculations of integrable and nonintegrable quantum spin models in one and two
dimensions and demonstrate an approximately linear system-size scaling of the
circuit complexity. We further map out the finite-temperature phase transition
line of the two-dimensional transverse field Ising model. Finally, we study the
impact of noise on AVQMETTS calculations using a phenomenological noise model.
Related papers
- Quantum many-body simulation of finite-temperature systems with sampling a series expansion of a quantum imaginary-time evolution [0.0]
Quantum computers are expected to enable us to simulate large systems at finite temperatures.
We propose a method suitable for quantum devices in this early stage to calculate the thermal-equilibrium expectation value of an observable at finite temperatures.
arXiv Detail & Related papers (2024-09-11T07:38:46Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Qubit-efficient simulation of thermal states with quantum tensor
networks [13.128146097939263]
We present a holographic quantum simulation algorithm to variationally prepare thermal states of interacting quantum manybody systems.
We demonstrate a small-scale proof of principle demonstration of this technique on Quantinuum's trapped-ion quantum processor.
arXiv Detail & Related papers (2022-05-12T18:26:49Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Continuous-variable assisted thermal quantum simulation [1.6530012863603747]
We present an experimentally feasible quantum algorithm assisted with continuous-variable simulating for quantum systems at finite temperatures.
It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits.
We propose a protocol implementable with superconducting or trapped ion quantum computers.
arXiv Detail & Related papers (2020-05-31T09:04:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.