Identifying Different Student Clusters in Functional Programming
Assignments: From Quick Learners to Struggling Students
- URL: http://arxiv.org/abs/2301.02611v1
- Date: Fri, 6 Jan 2023 17:15:58 GMT
- Title: Identifying Different Student Clusters in Functional Programming
Assignments: From Quick Learners to Struggling Students
- Authors: Chuqin Geng, Wenwen Xu, Yingjie Xu, Brigitte Pientka, Xujie Si
- Abstract summary: We analyze student assignment submission data collected from a functional programming course taught at McGill university.
This allows us to identify four clusters of students: "Quick-learning", "Hardworking", "Satisficing", and "Struggling"
We then analyze how work habits, working duration, the range of errors, and the ability to fix errors impact different clusters of students.
- Score: 2.0386745041807033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instructors and students alike are often focused on the grade in programming
assignments as a key measure of how well a student is mastering the material
and whether a student is struggling. This can be, however, misleading.
Especially when students have access to auto-graders, their grades may be
heavily skewed. In this paper, we analyze student assignment submission data
collected from a functional programming course taught at McGill university
incorporating a wide range of features. In addition to the grade, we consider
activity time data, time spent, and the number of static errors. This allows us
to identify four clusters of students: "Quick-learning", "Hardworking",
"Satisficing", and "Struggling" through cluster algorithms. We then analyze how
work habits, working duration, the range of errors, and the ability to fix
errors impact different clusters of students. This structured analysis provides
valuable insights for instructors to actively help different types of students
and emphasize different aspects of their overall course design. It also
provides insights for students themselves to understand which aspects they
still struggle with and allows them to seek clarification and adjust their work
habits.
Related papers
- Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all.
LLMs struggle to precisely detect student's errors and tailor their feedback to these errors.
Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions.
arXiv Detail & Related papers (2024-07-12T10:11:40Z) - ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data [0.0]
We developed ClickTree, a tree-based methodology, to predict student performance in mathematical assignments based on students' clickstream data.
The developed method achieved an AUC of 0.78844 in the Educational Data Mining Cup 2023 and ranked second in the competition.
Students who performed well in answering end-unit assignment problems engaged more with in-unit assignments and answered more problems correctly, while those who struggled had higher tutoring request rate.
arXiv Detail & Related papers (2024-03-01T23:39:03Z) - CLGT: A Graph Transformer for Student Performance Prediction in
Collaborative Learning [6.140954034246379]
We present an extended graph transformer framework for collaborative learning (CLGT) for evaluating and predicting the performance of students.
The experimental results confirm that the proposed CLGT outperforms the baseline models in terms of performing predictions based on the real-world datasets.
arXiv Detail & Related papers (2023-07-30T09:54:30Z) - Fair and skill-diverse student group formation via constrained k-way
graph partitioning [65.29889537564455]
This work introduces an unsupervised algorithm for fair and skill-diverse student group formation.
The skill sets of students are determined using unsupervised dimensionality reduction of course mark data via the Laplacian eigenmap.
The problem is formulated as a constrained graph partitioning problem, whereby the diversity of skill sets in each group are maximised.
arXiv Detail & Related papers (2023-01-12T14:02:49Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Computationally Identifying Funneling and Focusing Questions in
Classroom Discourse [24.279653100481863]
We propose the task of computationally detecting funneling and focusing questions in classroom discourse.
We release an annotated dataset of 2,348 teacher utterances labeled for funneling and focusing questions, or neither.
Our best model, a supervised RoBERTa model fine-tuned on our dataset, has a strong linear correlation of.76 with human expert labels and with positive educational outcomes.
arXiv Detail & Related papers (2022-07-08T01:28:29Z) - Know Thy Student: Interactive Learning with Gaussian Processes [11.641731210416102]
Our work proposes a simple diagnosis algorithm which uses Gaussian processes for inferring student-related information, before constructing a teaching dataset.
We study this in the offline reinforcement learning setting where the teacher must provide demonstrations to the student and avoid sending redundant trajectories.
Our experiments highlight the importance of diagosing before teaching and demonstrate how students can learn more efficiently with the help of an interactive teacher.
arXiv Detail & Related papers (2022-04-26T04:43:57Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Distilling Knowledge via Knowledge Review [69.15050871776552]
We study the factor of connection path cross levels between teacher and student networks, and reveal its great importance.
For the first time in knowledge distillation, cross-stage connection paths are proposed.
Our finally designed nested and compact framework requires negligible overhead, and outperforms other methods on a variety of tasks.
arXiv Detail & Related papers (2021-04-19T04:36:24Z) - A Machine Learning Approach to Assess Student Group Collaboration Using
Individual Level Behavioral Cues [8.840643644938156]
We propose using simple deep-learning-based machine learning models to automatically determine the overall collaboration quality of a group.
We come across the following challenges when building these models: 1) Limited training data, 2) Severe class label imbalance.
arXiv Detail & Related papers (2020-07-13T20:15:29Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.