ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data
- URL: http://arxiv.org/abs/2403.14664v1
- Date: Fri, 1 Mar 2024 23:39:03 GMT
- Title: ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data
- Authors: Narjes Rohani, Behnam Rohani, Areti Manataki,
- Abstract summary: We developed ClickTree, a tree-based methodology, to predict student performance in mathematical assignments based on students' clickstream data.
The developed method achieved an AUC of 0.78844 in the Educational Data Mining Cup 2023 and ranked second in the competition.
Students who performed well in answering end-unit assignment problems engaged more with in-unit assignments and answered more problems correctly, while those who struggled had higher tutoring request rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The prediction of student performance and the analysis of students' learning behavior play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behavior, educators can gain valuable insights into the factors that influence academic outcomes and identify areas of improvement in courses. In this study, we developed ClickTree, a tree-based methodology, to predict student performance in mathematical assignments based on students' clickstream data. We extracted a set of features, including problem-level, assignment-level and student-level features, from the extensive clickstream data and trained a CatBoost tree to predict whether a student successfully answers a problem in an assignment. The developed method achieved an AUC of 0.78844 in the Educational Data Mining Cup 2023 and ranked second in the competition. Furthermore, our results indicate that students encounter more difficulties in the problem types that they must select a subset of answers from a given set as well as problem subjects of Algebra II. Additionally, students who performed well in answering end-unit assignment problems engaged more with in-unit assignments and answered more problems correctly, while those who struggled had higher tutoring request rate. The proposed method can be utilized to improve students' learning experiences, and the above insights can be integrated into mathematical courses to enhance students' learning outcomes.
Related papers
- Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments [0.37729165787434493]
This paper develops automated tools to predict when a student is having difficulty.
In a potential application, such models can aid instructors in detecting struggling students and providing targeted help.
arXiv Detail & Related papers (2024-08-16T04:57:54Z) - MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties
Grounded in Math Reasoning Problems [74.73881579517055]
We propose a framework to generate such dialogues by pairing human teachers with a Large Language Model prompted to represent common student errors.
We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues.
arXiv Detail & Related papers (2023-05-23T21:44:56Z) - Fair and skill-diverse student group formation via constrained k-way
graph partitioning [65.29889537564455]
This work introduces an unsupervised algorithm for fair and skill-diverse student group formation.
The skill sets of students are determined using unsupervised dimensionality reduction of course mark data via the Laplacian eigenmap.
The problem is formulated as a constrained graph partitioning problem, whereby the diversity of skill sets in each group are maximised.
arXiv Detail & Related papers (2023-01-12T14:02:49Z) - Identifying Different Student Clusters in Functional Programming
Assignments: From Quick Learners to Struggling Students [2.0386745041807033]
We analyze student assignment submission data collected from a functional programming course taught at McGill university.
This allows us to identify four clusters of students: "Quick-learning", "Hardworking", "Satisficing", and "Struggling"
We then analyze how work habits, working duration, the range of errors, and the ability to fix errors impact different clusters of students.
arXiv Detail & Related papers (2023-01-06T17:15:58Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook [0.0]
This paper proposes a new model for predicting student performance based on an analysis of how students interact with an interactive online eTextbook.
To build the proposed model, we evaluated the most popular classification and regression algorithms on data from a data structures and algorithms course.
arXiv Detail & Related papers (2022-02-16T11:59:53Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Graph-based Exercise- and Knowledge-Aware Learning Network for Student
Performance Prediction [8.21303828329009]
We propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction.
We learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts.
arXiv Detail & Related papers (2021-06-01T06:53:17Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - Leveraging Affect Transfer Learning for Behavior Prediction in an
Intelligent Tutoring System [32.63911260416332]
We propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS)
By analyzing a student's face and gestures, our method predicts the outcome of a student answering a problem in an ITS from a video feed.
arXiv Detail & Related papers (2020-02-12T21:30:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.