論文の概要: Active Deep Learning Guided by Efficient Gaussian Process Surrogates
- arxiv url: http://arxiv.org/abs/2301.02761v1
- Date: Sat, 7 Jan 2023 01:35:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 16:05:11.196139
- Title: Active Deep Learning Guided by Efficient Gaussian Process Surrogates
- Title(参考訳): 効率的なガウスプロセスサロゲートによる能動的深層学習
- Authors: Yunpyo An, Suyeong Park, Kwang In Kim
- Abstract要約: アクティブラーニングの成功は、基礎となるデータ生成分布の探索に依存する。
これら2つのアクティブ学習モードを組み合わせた新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 22.748382089239488
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The success of active learning relies on the exploration of the underlying
data-generating distributions, populating sparsely labeled data areas, and
exploitation of the information about the task gained by the baseline (neural
network) learners. In this paper, we present a new algorithm that combines
these two active learning modes. Our algorithm adopts a Bayesian surrogate for
the baseline learner, and it optimizes the exploration process by maximizing
the gain of information caused by new labels. Further, by instantly updating
the surrogate learner for each new data instance, our model can faithfully
simulate and exploit the continuous learning behavior of the learner without
having to actually retrain it per label. In experiments with four benchmark
classification datasets, our method demonstrated significant performance gain
over state-of-the-arts.
- Abstract(参考訳): アクティブラーニングの成功は、基礎となるデータ生成分布の探索、疎いラベル付きデータ領域の投入、ベースライン(ニューラルネットワーク)学習者によって得られたタスクに関する情報の活用に依存している。
本稿では,これら2つのアクティブ学習モードを組み合わせた新しいアルゴリズムを提案する。
提案アルゴリズムは,ベースライン学習者に対してベイジアンサロゲートを採用し,新しいラベルによる情報の獲得を最大化して探索プロセスを最適化する。
さらに,新たなデータインスタンス毎にサロゲート学習者を即時更新することにより,学習者の継続的な学習行動を忠実にシミュレートし,活用することができる。
4つのベンチマーク分類データセットを用いた実験で,本手法は最先端技術よりも顕著な性能向上を示した。
関連論文リスト
- Towards Efficient Active Learning in NLP via Pretrained Representations [1.90365714903665]
ファインチューニング大型言語モデル(LLM)は、今や幅広いアプリケーションにおけるテキスト分類の一般的なアプローチである。
能動学習ループ内でのLLMの事前学習表現を用いて,このプロセスを大幅に高速化する。
私たちの戦略は、アクティブな学習ループを通した微調整と同じようなパフォーマンスを得るが、計算コストは桁違いに低い。
論文 参考訳(メタデータ) (2024-02-23T21:28:59Z) - Bandit-Driven Batch Selection for Robust Learning under Label Noise [20.202806541218944]
本稿では,SGD(Gradient Descent)トレーニングにおけるバッチ選択のための新しい手法を提案する。
本手法は,ラベルノイズの存在下での学習過程の最適化に重点を置いている。
論文 参考訳(メタデータ) (2023-10-31T19:19:01Z) - NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
ニューラル・タンジェント・カーネル・クラスタリング・プシュード・ラベル(NTKCPL)の新しいアクティブ・ラーニング・ストラテジーを提案する。
擬似ラベルとNTK近似を用いたモデル予測に基づいて経験的リスクを推定する。
提案手法を5つのデータセット上で検証し,ほとんどの場合,ベースライン法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-07T01:43:47Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Active Transfer Prototypical Network: An Efficient Labeling Algorithm
for Time-Series Data [1.7205106391379026]
本稿では,プロトタイプネットワーク(ProtoNet)をALイテレーションに組み込むことで,トレードオフ問題に対処する新しいFew-Shot Learning(FSL)ベースのALフレームワークを提案する。
このフレームワークは、UCI HAR/HAPTデータセットと現実世界のブレーキ操作データセットに基づいて検証された。
学習性能は、両方のデータセットにおける従来のALアルゴリズムを大幅に上回り、それぞれ10%と5%のラベル付け作業で90%の分類精度を達成した。
論文 参考訳(メタデータ) (2022-09-28T16:14:40Z) - Making Look-Ahead Active Learning Strategies Feasible with Neural
Tangent Kernels [6.372625755672473]
本稿では,仮説的ラベル付き候補データを用いた再学習に基づく,能動的学習獲得戦略の近似手法を提案する。
通常、これはディープ・ネットワークでは実現できないが、我々はニューラル・タンジェント・カーネルを用いて再トレーニングの結果を近似する。
論文 参考訳(メタデータ) (2022-06-25T06:13:27Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。