論文の概要: Towards Efficient Active Learning in NLP via Pretrained Representations
- arxiv url: http://arxiv.org/abs/2402.15613v1
- Date: Fri, 23 Feb 2024 21:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 17:51:24.593325
- Title: Towards Efficient Active Learning in NLP via Pretrained Representations
- Title(参考訳): 事前学習によるnlpの効率的なアクティブラーニングに向けて
- Authors: Artem Vysogorets, Achintya Gopal
- Abstract要約: ファインチューニング大型言語モデル(LLM)は、今や幅広いアプリケーションにおけるテキスト分類の一般的なアプローチである。
能動学習ループ内でのLLMの事前学習表現を用いて,このプロセスを大幅に高速化する。
私たちの戦略は、アクティブな学習ループを通した微調整と同じようなパフォーマンスを得るが、計算コストは桁違いに低い。
- 参考スコア(独自算出の注目度): 1.90365714903665
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fine-tuning Large Language Models (LLMs) is now a common approach for text
classification in a wide range of applications. When labeled documents are
scarce, active learning helps save annotation efforts but requires retraining
of massive models on each acquisition iteration. We drastically expedite this
process by using pretrained representations of LLMs within the active learning
loop and, once the desired amount of labeled data is acquired, fine-tuning that
or even a different pretrained LLM on this labeled data to achieve the best
performance. As verified on common text classification benchmarks with
pretrained BERT and RoBERTa as the backbone, our strategy yields similar
performance to fine-tuning all the way through the active learning loop but is
orders of magnitude less computationally expensive. The data acquired with our
procedure generalizes across pretrained networks, allowing flexibility in
choosing the final model or updating it as newer versions get released.
- Abstract(参考訳): ファインチューニング大型言語モデル(LLM)は、今や幅広いアプリケーションにおけるテキスト分類の一般的なアプローチである。
ラベル付きドキュメントが不足する場合、アクティブラーニングはアノテーションの労力を節約するが、獲得イテレーション毎に巨大なモデルを再トレーニングする必要がある。
能動学習ループ内でのLLMの事前学習表現を用いて、この処理を劇的に高速化し、所望のラベル付きデータを取得すると、このラベル付きデータに対して異なる事前学習されたLLMを微調整し、最高の性能を達成する。
トレーニング済みのBERTとRoBERTaをバックボーンとして、一般的なテキスト分類ベンチマークで検証したように、我々の戦略はアクティブな学習ループを通した微調整と同様のパフォーマンスを得るが、桁違いの計算コストがかかる。
この手順で取得したデータは、事前トレーニングされたネットワークをまたいで一般化され、最終モデルの選択や、新しいバージョンのリリース時に更新の柔軟性が得られます。
関連論文リスト
- STENCIL: Submodular Mutual Information Based Weak Supervision for Cold-Start Active Learning [1.9116784879310025]
STENCILは、クラス不均衡のコールドスタート設定において、一般的なアクティブな学習手法に対して、複数のテキスト分類データセットに対して10%-18%の精度で、レアクラスのF-1スコアを17%-40%の精度で改善する。
STENCILは、クラス不均衡のコールドスタート設定において、一般的なアクティブな学習方法よりも、複数のテキスト分類データセットに対して10%-18%、レアクラスのF-1スコアを17%-40%の精度で改善することを示した。
論文 参考訳(メタデータ) (2024-02-21T01:54:58Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - DST-Det: Simple Dynamic Self-Training for Open-Vocabulary Object Detection [72.25697820290502]
この研究は、ゼロショット分類によって潜在的に新しいクラスを特定するための単純かつ効率的な戦略を導入する。
このアプローチは、アノテーションやデータセット、再学習を必要とせずに、新しいクラスのリコールと精度を高めるセルフトレーニング戦略として言及する。
LVIS、V3Det、COCOを含む3つのデータセットに対する実証的な評価は、ベースラインのパフォーマンスを大幅に改善したことを示している。
論文 参考訳(メタデータ) (2023-10-02T17:52:24Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z) - Active Learning Guided by Efficient Surrogate Learners [25.52920030051264]
1つのデータポイントが新しいラベルを受け取るたびに、ディープラーニングモデルを再トレーニングするのは現実的ではない。
本稿では,ニューラルネットワークの主学習者とともに,ガウス過程の力を利用する新しい能動学習アルゴリズムを提案する。
提案モデルでは,新しいデータインスタンス毎のサロゲート学習者を積極的に更新し,ニューラルネットワークの連続学習ダイナミクスをエミュレートし,活用する。
論文 参考訳(メタデータ) (2023-01-07T01:35:25Z) - An Efficient Active Learning Pipeline for Legal Text Classification [2.462514989381979]
法律分野における事前学習言語モデルを用いて,能動的学習を効果的に活用するためのパイプラインを提案する。
我々は、知識蒸留を用いてモデルの埋め込みを意味論的意味のある空間に導く。
分類タスクに適応したContract-NLIとLEDGARベンチマークの実験により,本手法が標準AL戦略より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-15T13:07:02Z) - Active Transfer Prototypical Network: An Efficient Labeling Algorithm
for Time-Series Data [1.7205106391379026]
本稿では,プロトタイプネットワーク(ProtoNet)をALイテレーションに組み込むことで,トレードオフ問題に対処する新しいFew-Shot Learning(FSL)ベースのALフレームワークを提案する。
このフレームワークは、UCI HAR/HAPTデータセットと現実世界のブレーキ操作データセットに基づいて検証された。
学習性能は、両方のデータセットにおける従来のALアルゴリズムを大幅に上回り、それぞれ10%と5%のラベル付け作業で90%の分類精度を達成した。
論文 参考訳(メタデータ) (2022-09-28T16:14:40Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
我々は、半教師付き学習を通じてラベルのないデータを活用する別の方法として、自己学習について研究する。
本稿では,ラベル付きデータからタスク固有のクエリの埋め込みを計算するデータ拡張手法であるSentAugmentを紹介する。
我々のアプローチは、標準的なテキスト分類ベンチマークで最大2.6%の改善を達成し、スケーラブルで効果的な自己学習に繋がる。
論文 参考訳(メタデータ) (2020-10-05T17:52:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。