論文の概要: Faithful and Consistent Graph Neural Network Explanations with Rationale
Alignment
- arxiv url: http://arxiv.org/abs/2301.02791v2
- Date: Sat, 2 Sep 2023 19:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 06:54:57.751571
- Title: Faithful and Consistent Graph Neural Network Explanations with Rationale
Alignment
- Title(参考訳): Rationaleアライメントを用いた忠実で一貫性のあるグラフニューラルネットワークの解説
- Authors: Tianxiang Zhao, Dongsheng Luo, Xiang Zhang and Suhang Wang
- Abstract要約: インスタンスレベルのGNN説明は、ターゲットのGNNが予測に頼っているノードやエッジなどの重要な入力要素を発見することを目的としている。
様々なアルゴリズムが提案され、その多くは、元の予測を保存できる最小限のサブグラフを探索することで、このタスクを形式化する。
いくつかの部分グラフは元のグラフと同じもしくは類似した出力をもたらす。
弱いパフォーマンスのGNNを説明するためにそれらを適用することは、これらの問題をさらに増幅する。
- 参考スコア(独自算出の注目度): 38.66324833510402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncovering rationales behind predictions of graph neural networks (GNNs) has
received increasing attention over recent years. Instance-level GNN explanation
aims to discover critical input elements, like nodes or edges, that the target
GNN relies upon for making predictions. %These identified sub-structures can
provide interpretations of GNN's behavior. Though various algorithms are
proposed, most of them formalize this task by searching the minimal subgraph
which can preserve original predictions. However, an inductive bias is
deep-rooted in this framework: several subgraphs can result in the same or
similar outputs as the original graphs. Consequently, they have the danger of
providing spurious explanations and failing to provide consistent explanations.
Applying them to explain weakly-performed GNNs would further amplify these
issues. To address this problem, we theoretically examine the predictions of
GNNs from the causality perspective. Two typical reasons for spurious
explanations are identified: confounding effect of latent variables like
distribution shift, and causal factors distinct from the original input.
Observing that both confounding effects and diverse causal rationales are
encoded in internal representations, \tianxiang{we propose a new explanation
framework with an auxiliary alignment loss, which is theoretically proven to be
optimizing a more faithful explanation objective intrinsically. Concretely for
this alignment loss, a set of different perspectives are explored: anchor-based
alignment, distributional alignment based on Gaussian mixture models,
mutual-information-based alignment, etc. A comprehensive study is conducted
both on the effectiveness of this new framework in terms of explanation
faithfulness/consistency and on the advantages of these variants.
- Abstract(参考訳): 近年,グラフニューラルネットワーク(GNN)の予測の背後にある理論的根拠が注目されている。
インスタンスレベルのGNN説明は、ターゲットのGNNが予測に頼っているノードやエッジなどの重要な入力要素を発見することを目的としている。
%であり,これらのサブ構造はGNNの振る舞いを解釈することができる。
様々なアルゴリズムが提案されているが、その多くはオリジナルの予測を保存できる最小部分グラフを探索することでこのタスクを形式化する。
しかし、帰納バイアスはこのフレームワークで深く根付いており、いくつかの部分グラフは元のグラフと同じもしくは類似の出力をもたらす。
その結果、彼らは急激な説明をし、一貫した説明をしない危険がある。
弱いパフォーマンスのGNNを説明するためにそれらを適用することは、これらの問題をさらに増幅する。
本稿では,gnnの予測を因果関係の観点から理論的に検討する。
散発的な説明の典型的な2つの理由は、分布シフトのような潜在変数の効果と、元の入力と異なる因果要因である。
コンバウンディング効果と多様な因果的理性の両方が内部表現にエンコードされていることを観察し、我々は、より忠実な説明目的を本質的に最適化することが理論的に証明されている補助的なアライメント損失を持つ新しい説明枠組みを提案する。
具体的には, このアライメント損失に対して, アンカーベースアライメント, ガウス混合モデルに基づく分布アライメント, 相互情報ベースアライメントなど, 様々な視点を探索する。
この新枠組みの有効性について, 信頼性・一貫性の面から総合的な研究を行い, その利点について考察した。
関連論文リスト
- Incorporating Retrieval-based Causal Learning with Information
Bottlenecks for Interpretable Graph Neural Networks [12.892400744247565]
我々は,検索に基づく因果学習をグラフ情報ボットネック(GIB)理論に組み込んだ,解釈可能な因果GNNフレームワークを開発した。
多様な説明型を持つ実世界の説明シナリオにおいて,32.71%の精度を達成する。
論文 参考訳(メタデータ) (2024-02-07T09:57:39Z) - On Structural Explanation of Bias in Graph Neural Networks [40.323880315453906]
グラフニューラルネットワーク (GNN) は, 様々なグラフ解析問題において, 満足度の高い性能を示す。
GNNは特定の人口集団に対して偏見のある結果をもたらす可能性がある。
本稿では,GNNにおけるバイアスの構造的説明に関する新しい研究課題について検討する。
論文 参考訳(メタデータ) (2022-06-24T06:49:21Z) - On Consistency in Graph Neural Network Interpretation [34.25952902469481]
インスタンスレベルのGNN説明は、ターゲットのGNNが予測に頼っているノードやエッジなどの重要な入力要素を発見することを目的としている。
様々なアルゴリズムが提案されているが、その多くは最小の部分グラフを探索することによってこのタスクを定式化している。
埋め込みの整列による簡易かつ効果的な対策を提案する。
論文 参考訳(メタデータ) (2022-05-27T02:58:07Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Deconfounding to Explanation Evaluation in Graph Neural Networks [136.73451468551656]
我々は、全グラフと部分グラフの間に分布シフトが存在し、分布外問題を引き起こすと論じる。
本稿では,モデル予測に対する説明文の因果効果を評価するために,Decon founded Subgraph Evaluation (DSE)を提案する。
論文 参考訳(メタデータ) (2022-01-21T18:05:00Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
論文 参考訳(メタデータ) (2021-06-16T03:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。