App Review Driven Collaborative Bug Finding
- URL: http://arxiv.org/abs/2301.02818v1
- Date: Sat, 7 Jan 2023 09:38:06 GMT
- Title: App Review Driven Collaborative Bug Finding
- Authors: Xunzhu Tang and Haoye Tian and Pingfan Kong and Kui Liu and Jacques
Klein and Tegawend\'e F. Bissyande
- Abstract summary: We build on the hypothesis that mobile apps from the same category may be affected by similar bugs in their evolution process.
It is possible to transfer the experience of one historical app to quickly find bugs in its new counterparts.
We design the BugRMSys approach to recommend bug reports for a target app by matching historical bug reports from apps in the same category with user app reviews of the target app.
- Score: 5.024930832959602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software development teams generally welcome any effort to expose bugs in
their code base. In this work, we build on the hypothesis that mobile apps from
the same category (e.g., two web browser apps) may be affected by similar bugs
in their evolution process. It is therefore possible to transfer the experience
of one historical app to quickly find bugs in its new counterparts. This has
been referred to as collaborative bug finding in the literature. Our novelty is
that we guide the bug finding process by considering that existing bugs have
been hinted within app reviews. Concretely, we design the BugRMSys approach to
recommend bug reports for a target app by matching historical bug reports from
apps in the same category with user app reviews of the target app. We
experimentally show that this approach enables us to quickly expose and report
dozens of bugs for targeted apps such as Brave (web browser app). BugRMSys's
implementation relies on DistilBERT to produce natural language text
embeddings. Our pipeline considers similarities between bug reports and app
reviews to identify relevant bugs. We then focus on the app review as well as
potential reproduction steps in the historical bug report (from a same-category
app) to reproduce the bugs.
Overall, after applying BugRMSys to six popular apps, we were able to
identify, reproduce and report 20 new bugs: among these, 9 reports have been
already triaged, 6 were confirmed, and 4 have been fixed by official
development teams, respectively.
Related papers
- Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps [23.460238111094608]
ReBL is a novel feedback-driven approach to reproduce Android bug reports.
It is more flexible and context-aware than the traditional step-by-step entity matching approach.
It has the capability of handling non-crash functional bug reports.
arXiv Detail & Related papers (2024-07-06T19:58:03Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - Toward Rapid Bug Resolution for Android Apps [0.4759142872591625]
This paper describes the existing limitations of bug reports and identifies potential strategies for addressing them.
Our vision encompasses a future where the alleviation of these limitations and successful execution of our proposed new research directions can benefit both reporters and developers.
arXiv Detail & Related papers (2023-12-23T18:29:06Z) - Can LLMs Demystify Bug Reports? [0.6650227510403052]
ChatGPT was able to demystify and reproduce 50% of the reported bugs.
Being able to automatically address half of the reported bugs shows promising potential in the direction of applying machine learning to address bugs with only a human-in-the-loop to report the bug.
arXiv Detail & Related papers (2023-10-10T05:07:00Z) - Auto-labelling of Bug Report using Natural Language Processing [0.0]
Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking.
In this paper, we have proposed a solution using a combination of NLP techniques.
It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports.
arXiv Detail & Related papers (2022-12-13T02:32:42Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
We present S3M -- the first approach to computing stack trace similarity based on deep learning.
It is based on a biLSTM encoder and a fully-connected classifier to compute similarity.
Our experiments demonstrate the superiority of our approach over the state-of-the-art on both open-sourced data and a private JetBrains dataset.
arXiv Detail & Related papers (2021-03-18T21:10:41Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
We propose a novel emerging issue detection approach named MERIT.
Based on the AOBST model, we infer the topics negatively reflected in user reviews for one app version.
Experiments on popular apps from Google Play and Apple's App Store demonstrate the effectiveness of MERIT.
arXiv Detail & Related papers (2020-08-23T06:34:05Z) - Automating App Review Response Generation [67.58267006314415]
We propose a novel approach RRGen that automatically generates review responses by learning knowledge relations between reviews and their responses.
Experiments on 58 apps and 309,246 review-response pairs highlight that RRGen outperforms the baselines by at least 67.4% in terms of BLEU-4.
arXiv Detail & Related papers (2020-02-10T05:23:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.