"It's a Match!" -- A Benchmark of Task Affinity Scores for Joint
Learning
- URL: http://arxiv.org/abs/2301.02873v1
- Date: Sat, 7 Jan 2023 15:16:35 GMT
- Title: "It's a Match!" -- A Benchmark of Task Affinity Scores for Joint
Learning
- Authors: Raphael Azorin, Massimo Gallo, Alessandro Finamore, Dario Rossi,
Pietro Michiardi
- Abstract summary: Multi-Task Learning (MTL) promises attractive, characterizing the conditions of its success is still an open problem in Deep Learning.
Estimateing task affinity for joint learning is a key endeavor.
Recent work suggests that the training conditions themselves have a significant impact on the outcomes of MTL.
Yet, the literature is lacking a benchmark to assess the effectiveness of tasks affinity estimation techniques.
- Score: 74.14961250042629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the promises of Multi-Task Learning (MTL) are attractive,
characterizing the conditions of its success is still an open problem in Deep
Learning. Some tasks may benefit from being learned together while others may
be detrimental to one another. From a task perspective, grouping cooperative
tasks while separating competing tasks is paramount to reap the benefits of
MTL, i.e., reducing training and inference costs. Therefore, estimating task
affinity for joint learning is a key endeavor. Recent work suggests that the
training conditions themselves have a significant impact on the outcomes of
MTL. Yet, the literature is lacking of a benchmark to assess the effectiveness
of tasks affinity estimation techniques and their relation with actual MTL
performance. In this paper, we take a first step in recovering this gap by (i)
defining a set of affinity scores by both revisiting contributions from
previous literature as well presenting new ones and (ii) benchmarking them on
the Taskonomy dataset. Our empirical campaign reveals how, even in a
small-scale scenario, task affinity scoring does not correlate well with actual
MTL performance. Yet, some metrics can be more indicative than others.
Related papers
- Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review [7.776434991976473]
Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships.
This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges.
arXiv Detail & Related papers (2023-07-25T20:08:41Z) - Equitable Multi-task Learning [18.65048321820911]
Multi-task learning (MTL) has achieved great success in various research domains, such as CV, NLP and IR.
We propose a novel multi-task optimization method, named EMTL, to achieve equitable MTL.
Our method stably outperforms state-of-the-art methods on the public benchmark datasets of two different research domains.
arXiv Detail & Related papers (2023-06-15T03:37:23Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
We propose a new learning framework for 2-task MTL problem.
We define two new loss terms inspired by cycle-consistency loss and contrastive learning.
We theoretically prove that both losses help the model learn more efficiently and that cross-task consistency loss is better in terms of alignment with the straight-forward predictions.
arXiv Detail & Related papers (2021-11-28T11:55:19Z) - Task Uncertainty Loss Reduce Negative Transfer in Asymmetric Multi-task
Feature Learning [0.0]
Multi-task learning (MTL) can improve task performance overall relative to single-task learning (STL), but can hide negative transfer (NT)
Asymmetric multitask feature learning (AMTFL) is an approach that tries to address this by allowing tasks with higher loss values to have smaller influence on feature representations for learning other tasks.
We present examples of NT in two datasets (image recognition and pharmacogenomics) and tackle this challenge by using aleatoric homoscedastic uncertainty to capture the relative confidence between tasks, and set weights for task loss.
arXiv Detail & Related papers (2020-12-17T13:30:45Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.