論文の概要: Automatic Generation of German Drama Texts Using Fine Tuned GPT-2 Models
- arxiv url: http://arxiv.org/abs/2301.03119v2
- Date: Tue, 10 Jan 2023 14:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 14:02:53.599808
- Title: Automatic Generation of German Drama Texts Using Fine Tuned GPT-2 Models
- Title(参考訳): 微調整GPT-2モデルを用いたドイツ語ドラマテキストの自動生成
- Authors: Mariam Bangura, Kristina Barabashova, Anna Karnysheva, Sarah Semczuk,
Yifan Wang
- Abstract要約: この研究は、ドイツのドラマテキストの自動生成に向けられている。
GPT-2モデルを微調整し、キーワードに基づいてシーンの輪郭を生成する方法と、シーンの輪郭からシーンを生成する第2モデルを微調整する手法を提案する。
- 参考スコア(独自算出の注目度): 3.1360838651190797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study is devoted to the automatic generation of German drama texts. We
suggest an approach consisting of two key steps: fine-tuning a GPT-2 model (the
outline model) to generate outlines of scenes based on keywords and fine-tuning
a second model (the generation model) to generate scenes from the scene
outline. The input for the neural model comprises two datasets: the German
Drama Corpus (GerDraCor) and German Text Archive (Deutsches Textarchiv or DTA).
In order to estimate the effectiveness of the proposed method, our models are
compared with baseline GPT-2 models. Our models perform well according to
automatic quantitative evaluation, but, conversely, manual qualitative analysis
reveals a poor quality of generated texts. This may be due to the quality of
the dataset or training inputs.
- Abstract(参考訳): この研究は、ドイツのドラマテキストの自動生成に向けられている。
GPT-2モデル(アウトラインモデル)を微調整し、キーワードに基づいてシーンのアウトラインを生成する方法と、シーンのアウトラインからシーンを生成する第2モデル(生成モデル)を微調整する手法を提案する。
ニューラルネットワークの入力は、ドイツのドラマコーパス(gerdracor)とドイツのテキストアーカイブ(deutsches textarchivまたはdta)の2つのデータセットからなる。
提案手法の有効性を推定するために,本モデルとベースラインGPT-2モデルを比較した。
提案手法は自動定量的評価により良好に機能するが,逆に手作業による質的分析では生成テキストの品質が低かった。
これはデータセットやトレーニング入力の品質に起因する可能性がある。
関連論文リスト
- Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation [81.45400849638347]
In-image Machine Translation (IIMT) は、ソース言語のテキストを含む画像をターゲット言語の翻訳を含む画像に変換することを目的としている。
本稿では,4つのモジュールからなるエンドツーエンドIIMTモデルを提案する。
本モデルでは,70.9%のパラメータしか持たないカスケードモデルと比較して競争性能が向上し,画素レベルのエンド・ツー・エンドIIMTモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-07-03T08:15:39Z) - Exploring Automatic Evaluation Methods based on a Decoder-based LLM for
Text Generation [16.78350863261211]
本稿では,エンコーダモデルを用いたチューニングや,同じ条件下での大規模言語モデルなど,様々な手法を比較する。
実験結果から, 調律エンコーダモデルと比較すると, 調律デコーダモデルの性能は低かった。
また、ChatGPTのような非常に大きなデコーダベースのモデルのコンテキスト内学習は、きめ細かいセマンティックな違いを識別することが困難であることも明らかにした。
論文 参考訳(メタデータ) (2023-10-17T06:53:00Z) - Self-Alignment with Instruction Backtranslation [162.02529653768096]
本稿では,人文テキストに対応する命令を自動ラベル付けすることで,高品質な命令従言語モデルを構築する方法を提案する。
我々の手法は命令バックトランスレーションと呼ばれ、少量のシードデータと与えられたWebコーパスに基づいて微調整された言語モデルから始まります。
論文 参考訳(メタデータ) (2023-08-11T17:47:54Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
逆イベント(ADE)抽出は、デジタル製薬における中核的なタスクの1つである。
我々は、非公式テキストを用いたADE抽出のための19のトランスフォーマーモデルを評価する。
分析の最後には、実験データから導出可能なテイクホームメッセージのリストを同定する。
論文 参考訳(メタデータ) (2023-06-08T15:25:24Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
現在の言語モデルは高品質なテキストを生成することができる。
彼らは、これまで見たテキストを単にコピーしているか、それとも一般化可能な言語的抽象化を学んだのか?
本稿では、生成したテキストの新規性を評価するための分析スイートであるRAVENを紹介する。
論文 参考訳(メタデータ) (2021-11-18T04:07:09Z) - CoreLM: Coreference-aware Language Model Fine-Tuning [0.0]
我々は、現在の事前学習言語モデルのアーキテクチャを拡張した、CoreLMというファインチューニングフレームワークを提案する。
我々は、モデルの文脈空間外で利用可能な情報を作成し、計算コストのごく一部について、よりよい言語モデルをもたらす。
提案モデルでは, GPT2 と比較した場合, GUMBY と LAMBDADA のデータセットのパープレキシティが低くなる。
論文 参考訳(メタデータ) (2021-11-04T08:44:31Z) - A Temporal Variational Model for Story Generation [21.99104738567138]
最近の言語モデルは、物語生成において興味深く文法的に正しいテキストを生成することができるが、プロット開発や長期的一貫性を欠くことが多い。
本稿では,TD-VAE(Temporal Difference Variational Autoencoder)に基づく潜在ベクトル計画手法による実験を行う。
その結果,自動クローズおよびスワップ評価において高い性能を示した。
論文 参考訳(メタデータ) (2021-09-14T16:36:12Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
一連の自然言語キャプションが与えられた場合、エージェントはキャプションに対応する一連の画像を生成する必要がある。
それまでの作業では、このタスクで合成テキスト・画像モデルより優れた繰り返し生成モデルを導入してきた。
従来のモデリング手法には、デュアルラーニングフレームワークの追加など、いくつかの改善点を提示する。
論文 参考訳(メタデータ) (2021-05-20T20:42:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
私たちは、バイリンガルテキスト(bitext)からのみ学ぶことができるように、以前の作業からモデルを適用する。
提案した1つのモデルでは、両言語で制御されたパラフレーズ生成と、両言語で制御された機械翻訳の4つのタスクを実行することができる。
論文 参考訳(メタデータ) (2020-10-12T17:02:50Z) - Abstractive Text Summarization based on Language Model Conditioning and
Locality Modeling [4.525267347429154]
BERT言語モデルに基づいてTransformerベースのニューラルモデルをトレーニングする。
さらに,BERTウィンドウサイズよりも長いテキストのチャンクワイズ処理が可能なBERTウィンドウ方式を提案する。
我々のモデルの結果は、CNN/Daily Mailデータセットのベースラインと最先端モデルと比較される。
論文 参考訳(メタデータ) (2020-03-29T14:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。