論文の概要: Deep Planar Parallax for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2301.03178v1
- Date: Mon, 9 Jan 2023 06:02:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 17:08:46.577990
- Title: Deep Planar Parallax for Monocular Depth Estimation
- Title(参考訳): 深部平面視差による単眼深度推定
- Authors: Haoqian Liang, Zhichao Li, Ya Yang, Naiyan Wang
- Abstract要約: 連続フレームとフロー事前学習の明示的なワープは,幾何学的事前学習を効果的に行うことができることを示す。
また平面視差幾何学の本質的な弱点に対処するために平面位置埋め込みを提案する。
- 参考スコア(独自算出の注目度): 18.260899110570634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation is a fundamental problem in the perception system of
autonomous driving scenes. Although autonomous driving is challenging, much
prior knowledge can still be utilized, by which the sophistication of the
problem can be effectively restricted. Some previous works introduce the road
plane prior to the depth estimation problem according to the Planar Parallax
Geometry. However, we find that their usages are not effective, leaving the
network cannot learn the geometric information. To this end, we analyze this
problem in detail and reveal that explicit warping of consecutive frames and
flow pre-training can effectively bring the geometric prior into learning.
Furthermore, we propose Planar Position Embedding to deal with the intrinsic
weakness of plane parallax geometry. Comprehensive experimental results on
autonomous driving datasets like KITTI and Waymo Open Dataset (WOD) demonstrate
that our Planar Parallax Network(PPNet) dramatically outperforms existing
learning-based methods.
- Abstract(参考訳): 深度推定は、自動運転シーンの知覚システムにおいて根本的な問題である。
自律運転は難しいが、まだ多くの事前知識が利用できるため、問題の高度化を効果的に制限することができる。
平面パララックス幾何学(Paraar Parallax Geometry)による深度推定問題に先立って路面を導入している。
しかし、それらの使用法は有効ではなく、ネットワークは幾何情報を学ぶことができない。
そこで我々は,この問題を詳細に解析し,連続するフレームとフロー事前学習の明示的な歪みが,幾何学的事前学習を効果的に実現することを示した。
さらに,平面視差幾何学の本質的な弱点に対処する平面位置埋め込みを提案する。
KITTIやWaymo Open Dataset(WOD)といった自動運転データセットに関する総合的な実験結果は、私たちのPlanar Parallax Network(PPNet)が既存の学習ベースの手法を劇的に上回っていることを示している。
関連論文リスト
- Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation [38.81275292687583]
平面情報を適応的に利用し,階層的なフレームワーク内での深度予測を改善するPlane2Depthを提案する。
提案する平面案内深度発生器 (PGDG) では, 現場の平面をソフトにモデル化し, 画素ごとの平面係数を予測するためのプロトタイプとして, 一連の平面クエリを設計する。
提案するアダプティブプレーンクエリアグリゲーション(APGA)モジュールでは,マルチスケール平面特徴のアグリゲーションを改善するために,新たな機能インタラクションアプローチを導入する。
論文 参考訳(メタデータ) (2024-09-04T07:45:06Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
単色深度推定の目標は、入力として2次元単色RGB画像が与えられた深度マップを予測することである。
我々は、トレーニング中に固有のカメラパラメータを実行し、我々のモデルをさらに一般化するために天気増悪を適用することを計画している。
論文 参考訳(メタデータ) (2023-04-14T07:14:08Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Joint Prediction of Monocular Depth and Structure using Planar and
Parallax Geometry [4.620624344434533]
教師付き学習深度推定法は、LiDARデータのような高品質な地上構造で訓練すると、優れた性能が得られる。
提案手法は,有望な平面とパララックス幾何学パイプラインの構造情報と深度情報を組み合わせたU-Net教師あり学習ネットワークの構築である。
我々のモデルは細い物体と縁の深さ予測に優れており、構造予測ベースラインと比較して、より頑健に機能する。
論文 参考訳(メタデータ) (2022-07-13T17:04:05Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
本稿では,リアルタイムな単分子追跡と高密度フレームワークであるTANDEMを紹介する。
ポーズ推定のために、TANDEMはアライメントのスライディングウィンドウに基づいて光度バンドル調整を行う。
TANDEMは最先端のリアルタイム3D再構成性能を示す。
論文 参考訳(メタデータ) (2021-11-14T19:01:02Z) - Self-Supervised Monocular Depth Estimation with Internal Feature Fusion [12.874712571149725]
深度推定のための自己教師付き学習は、画像列の幾何学を用いて監督する。
そこで本研究では,ダウンおよびアップサンプリングの手順で意味情報を利用することのできる,新しい深度推定ネットワークDIFFNetを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:31:11Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z) - Self-Supervised Joint Learning Framework of Depth Estimation via
Implicit Cues [24.743099160992937]
深度推定のための自己教師型共同学習フレームワークを提案する。
提案するフレームワークは,KITTIおよびMake3Dデータセット上での最先端(SOTA)よりも優れている。
論文 参考訳(メタデータ) (2020-06-17T13:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。