論文の概要: L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging
- arxiv url: http://arxiv.org/abs/2301.03441v3
- Date: Sat, 5 Aug 2023 00:25:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 00:20:42.724985
- Title: L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging
- Title(参考訳): L-SeqSleepNet:自動睡眠停止のための全サイクル長周期モデリング
- Authors: Huy Phan, Kristian P. Lorenzen, Elisabeth Heremans, Oliver Y. Ch\'en,
Minh C. Tran, Philipp Koch, Alfred Mertins, Mathias Baumert, Kaare Mikkelsen,
Maarten De Vos
- Abstract要約: L-SeqSleepNetは、睡眠ステージングのためのサイクル全体の睡眠情報を考慮した、新しいディープラーニングモデルである。
L-SeqSleepNetは、N2睡眠の優位性を緩和し、他の睡眠段階におけるエラーを減少させることができる。
- 参考スコア(独自算出の注目度): 16.96499618061823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human sleep is cyclical with a period of approximately 90 minutes, implying
long temporal dependency in the sleep data. Yet, exploring this long-term
dependency when developing sleep staging models has remained untouched. In this
work, we show that while encoding the logic of a whole sleep cycle is crucial
to improve sleep staging performance, the sequential modelling approach in
existing state-of-the-art deep learning models are inefficient for that
purpose. We thus introduce a method for efficient long sequence modelling and
propose a new deep learning model, L-SeqSleepNet, which takes into account
whole-cycle sleep information for sleep staging. Evaluating L-SeqSleepNet on
four distinct databases of various sizes, we demonstrate state-of-the-art
performance obtained by the model over three different EEG setups, including
scalp EEG in conventional Polysomnography (PSG), in-ear EEG, and around-the-ear
EEG (cEEGrid), even with a single EEG channel input. Our analyses also show
that L-SeqSleepNet is able to alleviate the predominance of N2 sleep (the major
class in terms of classification) to bring down errors in other sleep stages.
Moreover the network becomes much more robust, meaning that for all subjects
where the baseline method had exceptionally poor performance, their performance
are improved significantly. Finally, the computation time only grows at a
sub-linear rate when the sequence length increases.
- Abstract(参考訳): ヒトの睡眠は約90分間の周期で循環し、睡眠データに長い時間的依存を暗示する。
しかし、睡眠ステージングモデルを開発する際の長期的な依存関係を探求することは、まだ修正されていない。
本研究では,睡眠サイクル全体の論理をエンコードすることは睡眠ステージング性能を向上させる上で重要であるが,既存のディープラーニングモデルにおける逐次モデリングアプローチはその目的のためには非効率であることを示す。
そこで本研究では,睡眠ステージングのためのサイクルごとの睡眠情報を考慮した学習モデルL-SeqSleepNetを提案する。
様々なサイズの4つの異なるデータベース上でL-SeqSleepNetを評価し,従来のポリソノグラフィ (PSG) における頭皮脳波 (cEEGrid) や脳内脳波 (cEEGrid) の3つの異なる脳波設定に対してモデルにより得られた最先端の性能を示す。
分析の結果、L-SeqSleepNetはN2睡眠(分類の面では主要な階級)の優位性を緩和し、他の睡眠段階におけるエラーを軽減できることがわかった。
さらにネットワークの堅牢性が向上し,ベースラインメソッドのパフォーマンスが著しく低下したすべての対象において,その性能が大幅に向上した。
最後に、列長が増加すると、計算時間はサブ線形速度でしか成長しない。
関連論文リスト
- ST-USleepNet: A Spatial-Temporal Coupling Prominence Network for Multi-Channel Sleep Staging [9.83413257745779]
睡眠ステージングは、睡眠の質を評価し、障害を診断するために重要である。
近年の人工知能の進歩により、自動睡眠ステージリングモデルの開発が進められている。
本稿では,時空間グラフ構築モジュールとU字型睡眠ネットワークからなるST-USleepNetという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T14:57:44Z) - Classification of sleep stages from EEG, EOG and EMG signals by SSNet [2.1915057426589746]
睡眠段階の分類は、睡眠障害ブレスティング(SDB)病を含む睡眠関連疾患の診断において重要な役割を担っている。
我々は,CNNとLSTMに基づく2つのディープラーニングネットワークからなる,SSNetというエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは, 睡眠段階の分類において, 最先端技術と比較して最高の性能を達成している。
論文 参考訳(メタデータ) (2023-07-03T01:05:24Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Quantifying the Impact of Data Characteristics on the Transferability of
Sleep Stage Scoring Models [0.10878040851637998]
遠隔睡眠モニタリングのための有望な方法として,単チャンネル脳波に基づく睡眠ステージ評価のための深層学習モデルが提案されている。
これらのモデルを新しいデータセット、特にウェアラブルデバイスに適用すると、2つの疑問が浮かび上がる。
まず、ターゲットデータセットのアノテーションが利用できない場合、どの異なるデータ特性が睡眠ステージのスコアリングのパフォーマンスに最も影響するか。
本稿では,異なるデータ特性が深層学習モデルの伝達性に与える影響を定量化する手法を提案する。
論文 参考訳(メタデータ) (2023-03-28T07:57:21Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
単チャンネル脳波(EEG)、脳電図(EOG)、筋電図(EMG)、心電図(ECG)などの単純なセンサーを用いた睡眠段階分類が注目されている。
本研究では、次の睡眠段階を予測する睡眠モデルを提案し、睡眠分類精度を向上させるために使用した。
論文 参考訳(メタデータ) (2023-02-17T07:37:54Z) - A Closed-loop Sleep Modulation System with FPGA-Accelerated Deep
Learning [1.5569382274788235]
我々は,低消費電力フィールドプログラマブルゲートアレイ(FPGA)デバイス上でのクローズドループ操作をサポートする睡眠変調システムを開発した。
ディープラーニング(DL)モデルは、低消費電力のフィールドプログラマブルゲートアレイ(FPGA)デバイスによって加速される。
81名の被験者を含む公衆睡眠データベースを用いて、85.8%の最先端の分類精度とF1スコアの79%の精度でモデルが検証されている。
論文 参考訳(メタデータ) (2022-11-19T01:47:53Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - Wake Word Detection with Streaming Transformers [72.66551640048405]
提案したトランスフォーマーモデルでは,同じ偽アラームレートで,平均25%の誤り拒否率でベースライン畳み込みネットワークを性能的に上回ることを示す。
Mobvoiのウェイクワードデータセットに関する実験により,提案したTransformerモデルはベースライン畳み込みネットワークを25%上回る性能を示した。
論文 参考訳(メタデータ) (2021-02-08T19:14:32Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - REST: Robust and Efficient Neural Networks for Sleep Monitoring in the
Wild [62.36144064259933]
ニューラルネットワークの逆トレーニングとLipschitz定数の制御を通じて、両問題に同時に対処する新しい方法であるRESTを提案する。
私たちは、RESTがノイズの存在下で、オリジナルのフルサイズのモデルを大幅に上回る、ロバストで効率的なモデルを生成することを実証しています。
これらのモデルをスマートフォン上のAndroidアプリケーションにデプロイすることにより、RESTによってモデルが最大17倍のエネルギー削減と9倍高速な推論を達成することができることを定量的に観察する。
論文 参考訳(メタデータ) (2020-01-29T17:23:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。