Deep learning approach for interruption attacks detection in LEO
satellite networks
- URL: http://arxiv.org/abs/2301.03998v1
- Date: Sat, 10 Dec 2022 21:21:14 GMT
- Title: Deep learning approach for interruption attacks detection in LEO
satellite networks
- Authors: Nacereddine Sitouah, Fatiha Merazka, Abdenour Hedjazi
- Abstract summary: This work aims to provide an interruption detection strategy for Low Earth Orbit (textsfLEO) satellite networks using deep learning algorithms.
We test different deep learning algorithms including Multi Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Gated Recurrent Units (GRU)
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The developments of satellite communication in network systems require strong
and effective security plans. Attacks such as denial of service (DoS) can be
detected through the use of machine learning techniques, especially under
normal operational conditions. This work aims to provide an interruption
detection strategy for Low Earth Orbit (\textsf{LEO}) satellite networks using
deep learning algorithms. Both the training, and the testing of the proposed
models are carried out with our own communication datasets, created by
utilizing a satellite traffic (benign and malicious) that was generated using
satellite networks simulation platforms, Omnet++ and Inet. We test different
deep learning algorithms including Multi Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), Gated Recurrent Units
(GRU), and Long Short-term Memory (LSTM). Followed by a full analysis and
investigation of detection rate in both binary classification, and
multi-classes classification that includes different interruption categories
such as Distributed DoS (DDoS), Network Jamming, and meteorological
disturbances. Simulation results for both classification types surpassed 99.33%
in terms of detection rate in scenarios of full network surveillance. However,
in more realistic scenarios, the best-recorded performance was 96.12% for the
detection of binary traffic and 94.35% for the detection of multi-class traffic
with a false positive rate of 3.72%, using a hybrid model that combines MLP and
GRU. This Deep Learning approach efficiency calls for the necessity of using
machine learning methods to improve security and to give more awareness to
search for solutions that facilitate data collection in LEO satellite networks.
Related papers
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
Botnets are computer networks controlled by malicious actors that present significant cybersecurity challenges.
This research addresses the sophisticated adversarial manipulations posed by attackers, aiming to undermine machine learning-based botnet detection systems.
We introduce a flow-based detection approach, leveraging machine learning and deep learning algorithms trained on the ISCX and ISOT datasets.
arXiv Detail & Related papers (2024-09-01T08:53:21Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions.
The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training.
Results indicate significant performance improvements across all settings.
arXiv Detail & Related papers (2024-07-03T07:19:41Z) - Novel Approach to Intrusion Detection: Introducing GAN-MSCNN-BILSTM with LIME Predictions [0.0]
This paper introduces an innovative intrusion detection system that harnesses Generative Adversarial Networks (GANs), Multi-Scale Convolutional Neural Networks (MSCNNs), and Bidirectional Long Short-Term Memory (BiLSTM) networks.
The system generates realistic network traffic data, encompassing both normal and attack patterns.
Evaluation on the Hogzilla dataset, a standard benchmark, showcases an impressive accuracy of 99.16% for multi-class classification and 99.10% for binary classification.
arXiv Detail & Related papers (2024-06-08T11:26:44Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Multi-class Network Intrusion Detection with Class Imbalance via LSTM & SMOTE [1.0591656257413806]
This paper proposes to use oversampling techniques along with appropriate loss functions to handle class imbalance for the detection of various types of network intrusions.
Our deep learning model employs LSTM with fully connected layers to perform multi-class classification of network attacks.
arXiv Detail & Related papers (2023-10-03T07:28:04Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks [0.0]
Intrusion detection is one of the challenging issues in the area of network security.
In this paper, a comparative analysis of conventional machine learning classification algorithms has been performed.
It can be observed that Multi-Layer Perception (MLP) has dependencies between input and output and relies more on network configuration for intrusion detection.
arXiv Detail & Related papers (2021-11-02T05:58:07Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.