A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series
- URL: http://arxiv.org/abs/2407.02861v1
- Date: Wed, 3 Jul 2024 07:19:41 GMT
- Title: A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series
- Authors: Carlo Cena, Silvia Bucci, Alessandro Balossino, Marcello Chiaberge,
- Abstract summary: This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions.
The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training.
Results indicate significant performance improvements across all settings.
- Score: 45.31237646796715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the space sector, due to environmental conditions and restricted accessibility, robust fault detection methods are imperative for ensuring mission success and safeguarding valuable assets. This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions, augmented with a self-supervised task based on sensors' data permutation. It focuses on enhancing fault detection within the satellite multivariate time series. The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training. Results indicate significant performance improvements across all settings. In particular, employing only the self-supervised loss yields the best overall results, suggesting its efficacy in guiding the network to extract relevant features for fault detection. This study presents a promising direction for improving fault detection in space systems and warrants further exploration in other datasets and applications.
Related papers
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - A Comparison of Deep Learning Architectures for Spacecraft Anomaly Detection [0.138120109831448]
This study aims to compare the efficacy of various deep learning architectures in detecting anomalies in spacecraft data.
The models under investigation include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformer-based architectures.
arXiv Detail & Related papers (2024-03-19T16:08:27Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Online Anomalous Subtrajectory Detection on Road Networks with Deep
Reinforcement Learning [38.71141801699763]
We propose a novel reinforcement learning based solution called RL4OASD.
RL4OASD involves two networks, one responsible for learning features of road networks and trajectories and the other responsible for detecting anomalous subtrajectories.
arXiv Detail & Related papers (2022-11-12T15:17:57Z) - DI-NIDS: Domain Invariant Network Intrusion Detection System [9.481792073140204]
In various applications, such as computer vision, domain adaptation techniques have been successful.
In the case of network intrusion detection however, the state-of-the-art domain adaptation approaches have had limited success.
We propose to extract domain invariant features using adversarial domain adaptation from multiple network domains.
arXiv Detail & Related papers (2022-10-15T10:26:22Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.