An accordion superlattice for controlling atom separation in optical
potentials
- URL: http://arxiv.org/abs/2301.04144v1
- Date: Tue, 10 Jan 2023 19:00:00 GMT
- Title: An accordion superlattice for controlling atom separation in optical
potentials
- Authors: Simon Wili, Tilman Esslinger, and Konrad Viebahn
- Abstract summary: We propose a method for separating trapped atoms in optical lattices by large distances.
By coherently loading atoms between the two superimposed potentials, we can reach, in principle, arbitrarily large atom separations.
The method can be applied to neutral-atom quantum computing with optical tweezers, as well as quantum simulation of low-entropy many-body states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for separating trapped atoms in optical lattices by large
distances. The key idea is the cyclic transfer of atoms between two lattices of
variable spacing, known as accordion lattices, each covering at least a factor
of two in lattice spacing. By coherently loading atoms between the two
superimposed potentials, we can reach, in principle, arbitrarily large atom
separations, while requiring only a relatively small numerical aperture.
Numerical simulations of our `accordion superlattice' show that the atoms
remain localised to one lattice site throughout the separation process, even
for moderate lattice depths. In a proof-of-principle experiment we demonstrate
the optical fields required for the accordion superlattice using acousto-optic
deflectors. The method can be applied to neutral-atom quantum computing with
optical tweezers, as well as quantum simulation of low-entropy many-body
states. For instance, a unit-filling atomic Mott insulator can be coherently
expanded by a factor of ten in order to load an optical tweezer array with very
high filling. In turn, sorted tweezer arrays can be compressed to form
high-density states of ultracold atoms in optical lattices. The method can be
also be applied to biological systems where dynamical separation of particles
is required.
Related papers
- Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Excitation spectrum of a multilevel atom coupled with a dielectric
nanostructure [0.0]
We calculate the excitation spectrum of a single-electron atom localized near a dielectric nanostructure.
In particular, the strong resonance interaction between atom(s) and light, propagating through a photonic crystal waveguide, justifies as realistic the scenario of a signal light coupling with a small atomic array consisting of a few atoms.
As a potential implication, the directional one-dimensional resonance scattering, expected in such systems, could provide a quantum bus by entangling distant atoms integrated into a quantum register.
arXiv Detail & Related papers (2023-12-14T21:17:12Z) - Generation of phonon quantum states and quantum correlations among
single photon emitters in hexagonal boron nitride [41.94295877935867]
Hexagonal boron nitride exhibits two types of defects with great potential for quantum information technologies.
A single SPE can be used to induce single-, two- and qubit-phonon states in the one dimensional channel.
Two distant SPEs can be coupled by the TPL that acts as a waveguide, thus exhibiting strong quantum correlations.
arXiv Detail & Related papers (2023-08-11T17:24:32Z) - Single atom in a superoscillatory optical trap [0.0]
We report trapping of single ultracold atom in an optical trap that can be continuously tuned from a standard Airy focus to a subwavelength hotspot smaller than the usual Abbe's diffraction limit.
We argue that superoscillatory trapping and continuous potential tuning offer not only a way to generate compact and tenable ensembles of trapped atoms for quantum simulators but will also be useful in single molecule quantum chemistry.
arXiv Detail & Related papers (2022-11-01T04:54:33Z) - Dimensional crossover in self-organised super-radiant phases of ultra
cold atoms inside a cavity [0.0]
We consider a condensate of ultra cold bosonic atoms in a linear optical cavity illuminated by a two-pump configuration.
We show such configuration allows a smooth transition from a one-dimensional quantum optical lattice configuration to a two-dimensional quantum optical lattice configuration induced by the cavity-atom interaction.
arXiv Detail & Related papers (2022-06-09T14:08:23Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Cavity Sub- and Superradiance Enhanced Ramsey Spectroscopy [0.0]
Ramsey spectroscopy in large, dense ensembles of ultra-cold atoms trapped in optical lattices suffers from dipole-dipole interaction induced shifts and collective superradiance limiting its precision and accuracy.
We propose a novel geometry implementing fast signal readout with minimal heating for large atom numbers at lower densities via an optical cavity operated in the weak single atom but strong collective coupling regime.
arXiv Detail & Related papers (2022-01-21T14:57:35Z) - Quantum Enhanced Cavity QED Interferometer with Partially Delocalized
Atoms in Lattices [0.0]
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice.
We show that for arrays of $104$ atoms, our protocol can reduce the required averaging time by a factor of $10$ compared to unentangled lattice-based interferometers.
arXiv Detail & Related papers (2021-04-09T05:58:24Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.