Randomized adaptive quantum state preparation
- URL: http://arxiv.org/abs/2301.04201v2
- Date: Fri, 6 Oct 2023 19:29:07 GMT
- Title: Randomized adaptive quantum state preparation
- Authors: Alicia B. Magann, Sophia E. Economou, Christian Arenz
- Abstract summary: A cost function is minimized to prepare a desired quantum state through an adaptively constructed quantum circuit.
We provide theoretical arguments and numerical evidence that convergence to the target state can be achieved for almost all initial states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an adaptive method for quantum state preparation that utilizes
randomness as an essential component and that does not require classical
optimization. Instead, a cost function is minimized to prepare a desired
quantum state through an adaptively constructed quantum circuit, where each
adaptive step is informed by feedback from gradient measurements in which the
associated tangent space directions are randomized. We provide theoretical
arguments and numerical evidence that convergence to the target state can be
achieved for almost all initial states. We investigate different randomization
procedures and develop lower bounds on the expected cost function change, which
allows for drawing connections to barren plateaus and for assessing the
applicability of the algorithm to large-scale problems.
Related papers
- Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits [4.112419132722306]
This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm.
Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting amenable to analysis.
arXiv Detail & Related papers (2023-10-31T18:55:45Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.