Fundamental limitations on optimization in variational quantum
algorithms
- URL: http://arxiv.org/abs/2205.05056v1
- Date: Tue, 10 May 2022 17:14:57 GMT
- Title: Fundamental limitations on optimization in variational quantum
algorithms
- Authors: Hao-Kai Zhang, Chengkai Zhu, Geng Liu, Xin Wang
- Abstract summary: A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
- Score: 7.165356904023871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploring quantum applications of near-term quantum devices is a rapidly
growing field of quantum information science with both theoretical and
practical interests. A leading paradigm to establish such near-term quantum
applications is variational quantum algorithms (VQAs). These algorithms use a
classical optimizer to train a parameterized quantum circuit to accomplish
certain tasks, where the circuits are usually randomly initialized. In this
work, we prove that for a broad class of such random circuits, the variation
range of the cost function via adjusting any local quantum gate within the
circuit vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free
optimizations in a natural manner and reveal extra harsh constraints on the
training landscapes of VQAs. Hence a fundamental limitation on the trainability
of VQAs is unraveled, indicating the essence of the optimization hardness in
the Hilbert space with exponential dimension. We further showcase the validity
of our results with numerical simulations of representative VQAs. We believe
that these results would deepen our understanding of the scalability of VQAs
and shed light on the search for near-term quantum applications with
advantages.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
Variational quantum algorithms (VQAs) promise efficient use of near-term quantum computers.
We show how to optimally train a VQA for learning quantum states.
We propose the application of Gaussian kernels for quantum machine learning.
arXiv Detail & Related papers (2021-04-29T17:54:59Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.