論文の概要: Explaining Deep Models through Forgettable Learning Dynamics
- arxiv url: http://arxiv.org/abs/2301.04221v1
- Date: Tue, 10 Jan 2023 21:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 14:20:22.109234
- Title: Explaining Deep Models through Forgettable Learning Dynamics
- Title(参考訳): 忘れられる学習ダイナミクスによる深層モデルの説明
- Authors: Ryan Benkert, Oluwaseun Joseph Aribido, and Ghassan AlRegib
- Abstract要約: 学習中の学習行動の可視化には,その後の学習の時期において,サンプルがどれだけ多く学習され,忘れられるかを追跡する。
この現象に触発されて,この情報を積極的に利用してモデル内のデータ表現を変化させる新たなセグメンテーション手法を提案する。
- 参考スコア(独自算出の注目度): 12.653673008542155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even though deep neural networks have shown tremendous success in countless
applications, explaining model behaviour or predictions is an open research
problem. In this paper, we address this issue by employing a simple yet
effective method by analysing the learning dynamics of deep neural networks in
semantic segmentation tasks. Specifically, we visualize the learning behaviour
during training by tracking how often samples are learned and forgotten in
subsequent training epochs. This further allows us to derive important
information about the proximity to the class decision boundary and identify
regions that pose a particular challenge to the model. Inspired by this
phenomenon, we present a novel segmentation method that actively uses this
information to alter the data representation within the model by increasing the
variety of difficult regions. Finally, we show that our method consistently
reduces the amount of regions that are forgotten frequently. We further
evaluate our method in light of the segmentation performance.
- Abstract(参考訳): ディープニューラルネットワークは無数のアプリケーションで大きな成功を収めているが、モデルの振る舞いや予測を説明することは、オープンリサーチの問題である。
本稿では,意味的セグメンテーションタスクにおける深層ニューラルネットワークの学習力学を解析し,単純で効果的な手法を用いてこの問題に対処する。
具体的には、トレーニング中の学習行動の可視化を行い、その後のトレーニング時代において、サンプルが学習され、忘れられた頻度を追跡する。
これにより、クラス決定境界に近接する重要な情報を導き出し、モデルに特定の課題をもたらす領域を特定することができる。
この現象に触発されて,この情報を積極的に利用して,困難領域の多様性を増すことにより,モデル内のデータ表現を変化させる新しいセグメンテーション手法を提案する。
最後に,提案手法は,頻繁に忘れられる領域の量を一定に削減することを示す。
セグメンテーション性能の観点から,本手法をさらに評価する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation [3.2340528215722553]
連続的なニューラル情報検索の系統的なタスク定式化を示す。
包括的連続神経情報検索フレームワークを提案する。
経験的評価は,提案フレームワークが神経情報検索における破滅的な忘れ込みを効果的に防止できることを示唆している。
論文 参考訳(メタデータ) (2023-08-16T14:01:25Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
我々はこれまで未利用であったプロセスの枠組みを活用することを提案する。
我々は、実際のニューロンスパイク列車に使用される神経科学技術を活用した、アクティベーション周波数のみに焦点をあてる。
各ネットワークにおけるアクティベーションパターンを記述するパラメータを導出し、アーキテクチャとトレーニングセット間で一貫した差異を明らかにする。
論文 参考訳(メタデータ) (2023-08-01T22:12:30Z) - Example Forgetting: A Novel Approach to Explain and Interpret Deep
Neural Networks in Seismic Interpretation [12.653673008542155]
ディープニューラルネットワークは、共通の解釈パイプラインにとって魅力的なコンポーネントです。
深層ニューラルネットワークは、モデルが訓練されていない部分に露出した場合、意味的に不正確な出力を生成するという特性のため、しばしば不信に満ちている。
本稿では,意味的誤動作予測をニューラルネットワーク表現多様体内の優雅な位置と効果的に関連付ける手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T19:19:22Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - Extracting Global Dynamics of Loss Landscape in Deep Learning Models [0.0]
本稿では,DOODL3 (Dynamical Organization of Deep Learning Loss Landscapes) のためのツールキットを提案する。
DOODL3は、ニューラルネットワークのトレーニングを動的システムとして定式化し、学習プロセスを分析し、損失ランドスケープにおける軌跡の解釈可能なグローバルビューを示す。
論文 参考訳(メタデータ) (2021-06-14T18:07:05Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - A Visual Analytics Framework for Explaining and Diagnosing Transfer
Learning Processes [42.57604833160855]
本稿では,深層ニューラルネットワークの学習における伝達学習プロセスの多段階探索のための視覚分析フレームワークを提案する。
本フレームワークは,ニューラルネットワークの深層学習において,既存のモデルから学習した知識がどのように新たな学習タスクに変換されるかを説明するために,マルチアスペクト設計を確立する。
論文 参考訳(メタデータ) (2020-09-15T05:59:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。