論文の概要: Elevation Estimation-Driven Building 3D Reconstruction from Single-View
Remote Sensing Imagery
- arxiv url: http://arxiv.org/abs/2301.04581v1
- Date: Wed, 11 Jan 2023 17:20:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 17:03:21.231384
- Title: Elevation Estimation-Driven Building 3D Reconstruction from Single-View
Remote Sensing Imagery
- Title(参考訳): 単視点リモートセンシング画像からの標高推定駆動型建物3次元再構成
- Authors: Yongqiang Mao, Kaiqiang Chen, Liangjin Zhao, Wei Chen, Deke Tang,
Wenjie Liu, Zhirui Wang, Wenhui Diao, Xian Sun, Kun Fu
- Abstract要約: リモートセンシング画像からの3D再構築は、スマートシティやフォトグラムなどの分野に幅広い応用がある。
入力単視点リモートセンシング画像から3次元ビルディングモデルを再構築するための効率的なDSM推定駆動再構築フレームワーク(Building3D)を提案する。
我々のビル3Dは高度予測のためのSFFDEネットワークに根ざし、マスク構築のためのビル抽出ネットワークと同期し、点雲再構成、表面再構成(シティGMLモデル再構成)を順次実施する。
- 参考スコア(独自算出の注目度): 20.001807614214922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building 3D reconstruction from remote sensing images has a wide range of
applications in smart cities, photogrammetry and other fields. Methods for
automatic 3D urban building modeling typically employ multi-view images as
input to algorithms to recover point clouds and 3D models of buildings.
However, such models rely heavily on multi-view images of buildings, which are
time-intensive and limit the applicability and practicality of the models. To
solve these issues, we focus on designing an efficient DSM estimation-driven
reconstruction framework (Building3D), which aims to reconstruct 3D building
models from the input single-view remote sensing image. First, we propose a
Semantic Flow Field-guided DSM Estimation (SFFDE) network, which utilizes the
proposed concept of elevation semantic flow to achieve the registration of
local and global features. Specifically, in order to make the network semantics
globally aware, we propose an Elevation Semantic Globalization (ESG) module to
realize the semantic globalization of instances. Further, in order to alleviate
the semantic span of global features and original local features, we propose a
Local-to-Global Elevation Semantic Registration (L2G-ESR) module based on
elevation semantic flow. Our Building3D is rooted in the SFFDE network for
building elevation prediction, synchronized with a building extraction network
for building masks, and then sequentially performs point cloud reconstruction,
surface reconstruction (or CityGML model reconstruction). On this basis, our
Building3D can optionally generate CityGML models or surface mesh models of the
buildings. Extensive experiments on ISPRS Vaihingen and DFC2019 datasets on the
DSM estimation task show that our SFFDE significantly improves upon
state-of-the-arts. Furthermore, our Building3D achieves impressive results in
the 3D point cloud and 3D model reconstruction process.
- Abstract(参考訳): リモートセンシング画像からの3d再構成の構築は、スマートシティ、フォトグラメトリー、その他の分野で幅広い応用がある。
自動3次元都市建物モデリングの手法は、通常、点雲と建物の3次元モデルを復元するアルゴリズムへの入力として多視点画像を用いる。
しかし、このようなモデルは、時間を要する建物の多視点画像に大きく依存しており、モデルの適用性と実用性を制限している。
これらの問題を解決するため,我々は,入力された単視点リモートセンシング画像から3次元建物モデルを構築することを目的とした,効率的なdsm推定駆動型再構築フレームワーク(building3d)の設計に注目する。
まず,局所的特徴とグローバルな特徴の登録を実現するために,高度意味フローという概念を用いたセマンティックフロー場誘導DSM推定(SFFDE)ネットワークを提案する。
具体的には,ネットワークセマンティックスをグローバルに認識するために,インスタンスのセマンティックグローバリゼーションを実現するためのElevation Semantic Globalization (ESG)モジュールを提案する。
さらに,グローバルな特徴のセマンティックスパンを緩和するために,高度セマンティックフローに基づく局所-グローバルな上昇セマンティックレジストレーション(L2G-ESR)モジュールを提案する。
我々のビルディング3dは、標高予測のためのsffdeネットワークを基盤とし、ビルディングマスクのビル抽出ネットワークと同期し、ポイントクラウド再構築、表面再構築(citygmlモデル再構成)を順次行う。
このベースで、Building3Dはオプションで建物のCityGMLモデルやサーフェスメッシュモデルを生成することができます。
DSM推定タスクにおけるISPRS Vaihingen と DFC2019 データセットの大規模な実験は、我々の SFFDE が最先端技術において著しく改善されていることを示している。
さらに,ビルディング3Dは3次元点雲と3次元モデル再構成プロセスにおいて印象的な結果が得られる。
関連論文リスト
- Exploiting Semantic Scene Reconstruction for Estimating Building Envelope Characteristics [6.382787013075262]
2次元画像入力から幾何構造特性を推定する新しいフレームワークであるBuildNet3Dを提案する。
本フレームワークは, 窓面間比と建物のフットプリントの推定において, 高い精度と一般化性を示すとともに, 様々な複雑な建築物構造について評価する。
論文 参考訳(メタデータ) (2024-10-29T13:29:01Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
大空間モデル(LSM)は、RGB画像を直接意味的放射場に処理する。
LSMは、単一のフィードフォワード操作における幾何学、外観、意味を同時に推定する。
新しい視点で言語と対話することで、多目的ラベルマップを生成することができる。
論文 参考訳(メタデータ) (2024-10-24T17:54:42Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
大規模再構成モデルは、単一または複数入力画像から自動3Dコンテンツ生成の領域において大きな進歩を遂げている。
彼らの成功にもかかわらず、これらのモデルはしばしば幾何学的不正確な3Dメッシュを生成し、画像データからのみ3D形状を推論する固有の課題から生まれた。
生成した3Dメッシュの忠実度を高めるために3Dポイントクラウドデータを利用する新しいフレームワークであるLarge Image and Point Cloud Alignment Model (LAM3D)を導入する。
論文 参考訳(メタデータ) (2024-05-24T15:09:12Z) - InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models [66.83681825842135]
InstantMeshは、単一のイメージからインスタント3Dメッシュを生成するためのフィードフォワードフレームワークである。
最新世代の品質とトレーニングのスケーラビリティが特徴だ。
InstantMeshのコード、重み、デモをすべてリリースし、3D生成AIのコミュニティに多大な貢献ができることを意図しています。
論文 参考訳(メタデータ) (2024-04-10T17:48:37Z) - StructuredMesh: 3D Structured Optimization of Fa\c{c}ade Components on
Photogrammetric Mesh Models using Binary Integer Programming [17.985961236568663]
我々は、フォトグラムメッシュモデル内の建物の規則性に応じてファサード構造を再構築する新しい手法であるStructuredMeshを提案する。
本手法では,仮想カメラを用いて建物モデルの多視点色と深度画像を取得する。
次に、深度画像を用いてこれらのボックスを3次元空間に再マップし、初期ファサードレイアウトを生成する。
論文 参考訳(メタデータ) (2023-06-07T06:40:54Z) - Combining visibility analysis and deep learning for refinement of
semantic 3D building models by conflict classification [3.2662392450935416]
本稿では,3次元モデルと窓とドアの特徴を統合化するための可視性解析とニューラルネットワークを組み合わせる手法を提案する。
この方法では、占有するボクセルは分類された点雲で融合され、ボクセルに意味を与える。
セマンティックボクセルとコンフリクトはベイズネットワークに組み合わされ、3Dモデルライブラリを用いて再構成されたファサード開口の分類と記述を行う。
論文 参考訳(メタデータ) (2023-03-10T16:01:30Z) - Flow-based GAN for 3D Point Cloud Generation from a Single Image [16.04710129379503]
本稿では,任意の解像度の点群をサンプリングするためのフローベース明示的生成モデルを継承する,ハイブリッドな明示的生成モデルを提案する。
大規模合成データセットShapeNetについて評価し,提案手法の優れた性能を示す実験結果を得た。
論文 参考訳(メタデータ) (2022-10-08T17:58:20Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Machine-learned 3D Building Vectorization from Satellite Imagery [7.887221474814986]
自動3Dビルディングの再構築とベクトル化のための機械学習に基づく手法を提案する。
単チャネルフォトグラム化デジタルサーフェスモデル(DSM)とパンクロマティック画像(PAN)を入力として、まず非構築オブジェクトをフィルタリングし、形状の構築を洗練する。
改良されたDSMと入力されたPAN画像はセマンティックセグメンテーションネットワークを介して、建物の屋根の端と角を検出する。
論文 参考訳(メタデータ) (2021-04-13T19:57:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。