論文の概要: Regist3R: Incremental Registration with Stereo Foundation Model
- arxiv url: http://arxiv.org/abs/2504.12356v1
- Date: Wed, 16 Apr 2025 02:46:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:49.178290
- Title: Regist3R: Incremental Registration with Stereo Foundation Model
- Title(参考訳): Regist3R: Stereo Foundation Model によるインクリメンタル登録
- Authors: Sidun Liu, Wenyu Li, Peng Qiao, Yong Dou,
- Abstract要約: コンピュータビジョンの分野では、マルチビュー3D再構成は不可欠だが難しい問題である。
本稿では,効率的かつスケーラブルな漸進的再構築に適した新しいステレオ基礎モデルであるRegist3Rを提案する。
カメラポーズ推定と3次元再構成のための公開データセット上でRegist3Rを評価する。
- 参考スコア(独自算出の注目度): 11.220655907305515
- License:
- Abstract: Multi-view 3D reconstruction has remained an essential yet challenging problem in the field of computer vision. While DUSt3R and its successors have achieved breakthroughs in 3D reconstruction from unposed images, these methods exhibit significant limitations when scaling to multi-view scenarios, including high computational cost and cumulative error induced by global alignment. To address these challenges, we propose Regist3R, a novel stereo foundation model tailored for efficient and scalable incremental reconstruction. Regist3R leverages an incremental reconstruction paradigm, enabling large-scale 3D reconstructions from unordered and many-view image collections. We evaluate Regist3R on public datasets for camera pose estimation and 3D reconstruction. Our experiments demonstrate that Regist3R achieves comparable performance with optimization-based methods while significantly improving computational efficiency, and outperforms existing multi-view reconstruction models. Furthermore, to assess its performance in real-world applications, we introduce a challenging oblique aerial dataset which has long spatial spans and hundreds of views. The results highlight the effectiveness of Regist3R. We also demonstrate the first attempt to reconstruct large-scale scenes encompassing over thousands of views through pointmap-based foundation models, showcasing its potential for practical applications in large-scale 3D reconstruction tasks, including urban modeling, aerial mapping, and beyond.
- Abstract(参考訳): コンピュータビジョンの分野では、マルチビュー3D再構成は不可欠だが難しい問題である。
DUSt3Rとその後継者は、未提示画像から3D再構成において画期的な進歩を遂げているが、これらの手法は、高い計算コストとグローバルアライメントによって引き起こされる累積誤差を含む、多視点シナリオへのスケーリングにおいて、重大な制限を示す。
これらの課題に対処するため、我々は、効率よくスケーラブルなインクリメンタルな再構築に適した、新しいステレオ基礎モデルであるRegist3Rを提案する。
Regist3Rはインクリメンタルな再構築パラダイムを活用し、非秩序で多視点の画像コレクションから大規模な3D再構成を可能にする。
カメラポーズ推定と3次元再構成のための公開データセット上でRegist3Rを評価する。
実験により,Regist3Rは計算効率を大幅に向上し,既存のマルチビュー再構成モデルよりも優れた性能を示した。
さらに、実世界のアプリケーションにおけるその性能を評価するために、長い空間幅と数百のビューを持つ難解な斜め空中データセットを導入する。
結果はRegist3Rの有効性を浮き彫りにした。
また、ポイントマップに基づく基礎モデルを用いて、何千ものビューを含む大規模なシーンを再構築する最初の試みを実証し、都市モデリング、空中マッピングなど大規模な3D再構成タスクにおける実用的可能性を示した。
関連論文リスト
- Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass [68.78222900840132]
我々は,DUSt3Rに並列に複数のビューを処理することで,効率よくスケーラブルな3D再構成を実現する新しい多視点一般化であるFast3Rを提案する。
Fast3Rは最先端のパフォーマンスを示し、推論速度とエラーの蓄積が大幅に改善された。
論文 参考訳(メタデータ) (2025-01-23T18:59:55Z) - 360Recon: An Accurate Reconstruction Method Based on Depth Fusion from 360 Images [10.564434148892362]
360度画像は、従来のピンホールカメラに比べてはるかに広い視野を提供する。
これにより、VR、AR、および関連分野のアプリケーションにとって重要である。
ERP画像のための革新的MVSアルゴリズムである360Reconを提案する。
論文 参考訳(メタデータ) (2024-11-28T12:30:45Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-10T16:33:56Z) - MVGamba: Unify 3D Content Generation as State Space Sequence Modeling [150.80564081817786]
本稿では,多視点ガウス再構成器を備えた一般軽量ガウス再構成モデルMVGambaを紹介する。
オフザディテールのマルチビュー拡散モデルを統合することで、MVGambaは単一の画像、スパース画像、テキストプロンプトから3D生成タスクを統一する。
実験により、MVGambaは、すべての3Dコンテンツ生成シナリオで最先端のベースラインを約0.1タイムのモデルサイズで上回ります。
論文 参考訳(メタデータ) (2024-06-10T15:26:48Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - Reconstructing Satellites in 3D from Amateur Telescope Images [44.20773507571372]
本稿では,ハイブリッド画像前処理パイプラインを統合することで,障害を克服する新しい計算イメージングフレームワークを提案する。
我々は,中国の江東宇宙ステーションと国際宇宙ステーションの合成衛星データセットとオンスキー観測の両方にアプローチを検証した。
我々のフレームワークは地球からの高忠実度3D衛星監視を可能にし、宇宙状況認識のためのコスト効率の良い代替手段を提供する。
論文 参考訳(メタデータ) (2024-04-29T03:13:09Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
本稿では,数枚の写真を用いて現実のシーンを再構成するReconFusionを提案する。
提案手法は,合成および多視点データセットに基づいて訓練された新規なビュー合成に先立って拡散を利用する。
本手法は,観測領域の外観を保ちながら,非拘束領域における現実的な幾何学とテクスチャを合成する。
論文 参考訳(メタデータ) (2023-12-05T18:59:58Z) - Elevation Estimation-Driven Building 3D Reconstruction from Single-View
Remote Sensing Imagery [20.001807614214922]
リモートセンシング画像からの3D再構築は、スマートシティやフォトグラムなどの分野に幅広い応用がある。
入力単視点リモートセンシング画像から3次元ビルディングモデルを再構築するための効率的なDSM推定駆動再構築フレームワーク(Building3D)を提案する。
我々のビル3Dは高度予測のためのSFFDEネットワークに根ざし、マスク構築のためのビル抽出ネットワークと同期し、点雲再構成、表面再構成(シティGMLモデル再構成)を順次実施する。
論文 参考訳(メタデータ) (2023-01-11T17:20:30Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。