論文の概要: Deep Residual Axial Networks
- arxiv url: http://arxiv.org/abs/2301.04631v1
- Date: Wed, 11 Jan 2023 18:36:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 17:47:10.871193
- Title: Deep Residual Axial Networks
- Title(参考訳): 奥行き軸ネットワーク
- Authors: Nazmul Shahadat, Anthony S. Maida
- Abstract要約: 軸方向ResNetは空間的2次元畳み込み演算を2つの連続した1次元畳み込み演算に置き換える。
CIFARベンチマーク、SVHN、Tiny ImageNet画像分類データセットにおいて、RANはResNetsよりも約49%少ないパラメータで性能が向上していることを示す。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While residual networks (ResNets) demonstrate outstanding performance on
computer vision tasks, their computational cost still remains high. Here, we
focus on reducing this cost by proposing a new network architecture, axial
ResNet, which replaces spatial 2D convolution operations with two consecutive
1D convolution operations. Convergence of very deep axial ResNets has faced
degradation problems which prevent the networks from performing efficiently. To
mitigate this, we apply a residual connection to each 1D convolutional
operation and propose our final novel architecture namely residual axial
networks (RANs). Extensive benchmark evaluation shows that RANs outperform with
about 49% fewer parameters than ResNets on CIFAR benchmarks, SVHN, and Tiny
ImageNet image classification datasets. Moreover, our proposed RANs show
significant improvement in validation performance in comparison to the wide
ResNets on CIFAR benchmarks and the deep recursive residual networks on image
super-resolution dataset.
- Abstract(参考訳): 残余ネットワーク(ResNets)はコンピュータビジョンタスクにおいて優れた性能を示すが、その計算コストは依然として高い。
本稿では,空間的な2次元畳み込み操作を2つの連続する1次元畳み込み操作に置き換える新しいネットワークアーキテクチャであるアキシアル・レスネクタの提案により,コスト削減に重点を置く。
非常に深い軸方向ResNetの収束性は、ネットワークの効率を損なう劣化問題に直面している。
これを緩和するために,各1次元畳み込み動作に残差接続を適用し,残差軸ネットワーク (rans) という新しいアーキテクチャを提案する。
CIFARベンチマーク、SVHN、Tiny ImageNetイメージ分類データセットでは、RANはResNetsよりも約49%少ないパラメータでパフォーマンスが向上している。
さらに,提案するRANは,CIFARベンチマークのResNetと画像超解像データセットの深部再帰残差ネットワークと比較して,検証性能が大幅に向上したことを示す。
関連論文リスト
- A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
入力テンソルを複数のチャネルグループに分割するSDTAエンコーダを導入する。
1.3Mパラメータを持つEdgeNeXtモデルでは、ImageNet-1Kで71.2%のTop-1精度を実現している。
パラメータ5.6MのEdgeNeXtモデルでは、ImageNet-1Kで79.4%のTop-1精度を実現しています。
論文 参考訳(メタデータ) (2022-06-21T17:59:56Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
畳み込みニューラルネットワーク(CNN)の設計の最近の進歩は、画像超解像(SR)の性能を大幅に向上させた。
残差ブロック内の一連の密接な接続を含む単位上に構築されたスケールリカレントSRアーキテクチャを提案する(Residual Dense Blocks (RDBs))。
我々のスケールリカレント設計は、現在の最先端のアプローチに比べてパラメトリックに効率的でありながら、より高いスケール要因の競合性能を提供する。
論文 参考訳(メタデータ) (2022-01-28T09:18:43Z) - Greedy Network Enlarging [53.319011626986004]
本稿では,計算のリアルタイム化に基づくグリーディ・ネットワーク拡大手法を提案する。
異なる段階の計算をステップバイステップで修正することで、拡張されたネットワークはMACの最適な割り当てと利用を提供する。
GhostNetへの我々の手法の適用により、最先端の80.9%と84.3%のImageNet Top-1アキュラシーを実現する。
論文 参考訳(メタデータ) (2021-07-31T08:36:30Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs [32.054160078692036]
3D CNNを高いスパーシティレベルにプルーンするResource Aware Neuron Pruning (RANP)アルゴリズムを紹介します。
提案アルゴリズムは, FLOPの約50%-95%の削減, メモリの35%-80%の削減を実現している。
論文 参考訳(メタデータ) (2021-02-09T04:35:29Z) - Tensor Reordering for CNN Compression [7.228285747845778]
畳み込みニューラルネットワーク(CNN)フィルタにおけるパラメータ冗長性は,スペクトル領域におけるプルーニングによって効果的に低減できることを示す。
提案手法は事前学習したCNNに対して適用され,最小限の微調整により元のモデル性能を回復できることを示す。
論文 参考訳(メタデータ) (2020-10-22T23:45:34Z) - Improved Residual Networks for Image and Video Recognition [98.10703825716142]
ResNets(Residual Networks)は、CNN(Convolutional Neural Network)アーキテクチャの強力なタイプである。
ベースライン上での精度と学習収束性を一貫した改善を示す。
提案手法では,高度に深いネットワークをトレーニングできるが,ベースラインは厳密な最適化問題を示す。
論文 参考訳(メタデータ) (2020-04-10T11:09:50Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。