Phase-shifted Adversarial Training
- URL: http://arxiv.org/abs/2301.04785v3
- Date: Wed, 23 Aug 2023 09:06:18 GMT
- Title: Phase-shifted Adversarial Training
- Authors: Yeachan Kim, Seongyeon Kim, Ihyeok Seo, Bonggun Shin
- Abstract summary: We analyze the behavior of adversarial training through the lens of response frequency.
PhaseAT significantly improves the convergence for high-frequency information.
This results in improved adversarial robustness by enabling the model to have smoothed predictions near each data.
- Score: 8.89749787668458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training has been considered an imperative component for safely
deploying neural network-based applications to the real world. To achieve
stronger robustness, existing methods primarily focus on how to generate strong
attacks by increasing the number of update steps, regularizing the models with
the smoothed loss function, and injecting the randomness into the attack.
Instead, we analyze the behavior of adversarial training through the lens of
response frequency. We empirically discover that adversarial training causes
neural networks to have low convergence to high-frequency information,
resulting in highly oscillated predictions near each data. To learn
high-frequency contents efficiently and effectively, we first prove that a
universal phenomenon of frequency principle, i.e., \textit{lower frequencies
are learned first}, still holds in adversarial training. Based on that, we
propose phase-shifted adversarial training (PhaseAT) in which the model learns
high-frequency components by shifting these frequencies to the low-frequency
range where the fast convergence occurs. For evaluations, we conduct the
experiments on CIFAR-10 and ImageNet with the adaptive attack carefully
designed for reliable evaluation. Comprehensive results show that PhaseAT
significantly improves the convergence for high-frequency information. This
results in improved adversarial robustness by enabling the model to have
smoothed predictions near each data.
Related papers
- Correlation Analysis of Adversarial Attack in Time Series Classification [6.117704456424016]
This study investigates the vulnerability of time series classification models to adversarial attacks.
Regularization techniques and noise introduction are shown to enhance the effectiveness of attacks.
Models designed to prioritize global information are revealed to possess greater resistance to adversarial manipulations.
arXiv Detail & Related papers (2024-08-21T01:11:32Z) - Exploring Frequencies via Feature Mixing and Meta-Learning for Improving Adversarial Transferability [26.159434438078968]
We introduce a frequency decomposition-based feature mixing method to exploit frequency characteristics in both clean and adversarial samples.
Our findings suggest that incorporating features of clean samples into adversarial features extracted from adversarial examples is more effective in attacking normally-trained models.
We propose a cross-frequency meta-optimization approach comprising the meta-train step, meta-test step, and final update.
arXiv Detail & Related papers (2024-05-06T06:32:58Z) - The Effectiveness of Random Forgetting for Robust Generalization [21.163070161951868]
We introduce a novel learning paradigm called "Forget to Mitigate Overfitting" (FOMO)
FOMO alternates between the forgetting phase, which randomly forgets a subset of weights, and the relearning phase, which emphasizes learning generalizable features.
Our experiments show that FOMO alleviates robust overfitting by significantly reducing the gap between the best and last robust test accuracy.
arXiv Detail & Related papers (2024-02-18T23:14:40Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Frequency Domain Adversarial Training for Robust Volumetric Medical
Segmentation [111.61781272232646]
It is imperative to ensure the robustness of deep learning models in critical applications such as, healthcare.
We present a 3D frequency domain adversarial attack for volumetric medical image segmentation models.
arXiv Detail & Related papers (2023-07-14T10:50:43Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Guided Interpolation for Adversarial Training [73.91493448651306]
As training progresses, the training data becomes less and less attackable, undermining the robustness enhancement.
We propose the guided framework (GIF), which employs the previous epoch's meta information to guide the data's adversarial variants.
Compared with the vanilla mixup, the GIF can provide a higher ratio of attackable data, which is beneficial to the robustness enhancement.
arXiv Detail & Related papers (2021-02-15T03:55:08Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - Frequency-based Automated Modulation Classification in the Presence of
Adversaries [17.930854969511046]
We present a novel receiver architecture consisting of deep learning models capable of withstanding transferable adversarial interference.
In this work, we demonstrate classification performance improvements greater than 30% on recurrent neural networks (RNNs) and greater than 50% on convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-11-02T17:12:22Z) - Towards Rapid and Robust Adversarial Training with One-Step Attacks [0.0]
Adversarial training is the most successful method for increasing the robustness of neural networks against adversarial attacks.
We present two ideas that enable adversarial training with the computationally less expensive Fast Gradient Sign Method.
We show that noise injection in conjunction with FGSM-based adversarial training achieves comparable results to adversarial training with PGD while being considerably faster.
arXiv Detail & Related papers (2020-02-24T07:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.