論文の概要: Data-centric AI: Perspectives and Challenges
- arxiv url: http://arxiv.org/abs/2301.04819v1
- Date: Thu, 12 Jan 2023 05:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 13:41:28.741294
- Title: Data-centric AI: Perspectives and Challenges
- Title(参考訳): データ中心AI: 展望と課題
- Authors: Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Xia Hu
- Abstract要約: データ中心AI(DCAI)は、モデル進歩からデータ品質と信頼性の確保への根本的なシフトを提唱している。
データ開発、評価データ開発、データメンテナンスの3つの一般的なミッションをまとめる。
今後の探索を動機付けるためのオープンな課題をリストアップする。
- 参考スコア(独自算出の注目度): 51.70828802140165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The role of data in building AI systems has recently been significantly
magnified by the emerging concept of data-centric AI (DCAI), which advocates a
fundamental shift from model advancements to ensuring data quality and
reliability. Although our community has continuously invested efforts into
enhancing data in different aspects, they are often isolated initiatives on
specific tasks. To facilitate the collective initiative in our community and
push forward DCAI, we draw a big picture and bring together three general
missions: training data development, evaluation data development, and data
maintenance. We provide a top-level discussion on representative DCAI tasks and
share perspectives. Finally, we list open challenges to motivate future
exploration.
- Abstract(参考訳): AIシステム構築におけるデータの役割は、モデル進歩からデータ品質と信頼性の確保への根本的なシフトを提唱する、データ中心型AI(DCAI)という新たな概念によって、近年大きく拡大している。
私たちのコミュニティは、さまざまな側面のデータの強化に継続的に努力してきましたが、特定のタスクに関する独立したイニシアティブであることが多いのです。
コミュニティにおける総合的なイニシアチブの促進とDCAIの推進のために、私たちは大きな図を描き、データ開発、評価データ開発、データ保守という3つの一般的なミッションをまとめました。
代表的DCAIタスクについてトップレベルの議論を行い、視点を共有します。
最後に、将来の探検を動機づけるオープンな課題をリストアップします。
関連論文リスト
- Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting [36.31269406067809]
データ中心のAIは、AIモデルのトレーニング、特にトランスフォーマーベースのTSFモデルの効率的なトレーニングに不可欠である、と私たちは主張する。
我々は、データ中心のAIの観点から、これまでの研究成果をレビューし、トランスフォーマーベースのアーキテクチャとデータ中心のAIの将来の開発のための基礎的な作業を行うつもりです。
論文 参考訳(メタデータ) (2024-07-29T08:27:21Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - Data-Centric Artificial Intelligence [2.5874041837241304]
データ中心の人工知能(データ中心のAI)は、効率的で効率的なAIベースのシステムを構築する上で、データの体系的な設計とエンジニアリングが不可欠であることを強調する新しいパラダイムである。
関連する用語を定義し、データ中心のパラダイムとモデル中心のパラダイムを対比するための重要な特徴を提供し、データ中心のAIのためのフレームワークを導入します。
論文 参考訳(メタデータ) (2022-12-22T16:41:03Z) - The Principles of Data-Centric AI (DCAI) [9.211953610948862]
新たな概念としてのデータ中心型AI(DCAI)は、データ、その品質、ダイナミズムを最前線にもたらす。
この記事では、DCAIの基礎を概説するために、データ中心の視点と概念をまとめます。
論文 参考訳(メタデータ) (2022-11-26T16:43:40Z) - DC-Check: A Data-Centric AI checklist to guide the development of
reliable machine learning systems [81.21462458089142]
データ中心のAIは、信頼できるエンドツーエンドパイプラインを可能にする統一パラダイムとして登場しています。
データ中心の考慮事項を抽出する実行可能なチェックリストスタイルのフレームワークであるDC-Checkを提案する。
この開発におけるデータ中心のレンズは、システム開発に先立って思考力と透明性を促進することを目的としている。
論文 参考訳(メタデータ) (2022-11-09T17:32:09Z) - Fantastic Data and How to Query Them [3.464871689508835]
異なるデータセットに対する統一されたフレームワークに関するビジョンを提示し、それらを統合し、簡単にクエリできるようにします。
我々は、コンピュータビジョンにおけるデータセットのためのフレームワークを作成し、その利点をさまざまなシナリオで示すために、現在進行中の作業でこれを実証しています。
論文 参考訳(メタデータ) (2022-01-13T15:24:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。