論文の概要: Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2407.19784v1
- Date: Mon, 29 Jul 2024 08:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 14:35:40.340433
- Title: Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting
- Title(参考訳): 調査と分類:トランスフォーマーによる時系列予測におけるデータ中心AIの役割
- Authors: Jingjing Xu, Caesar Wu, Yuan-Fang Li, Gregoire Danoy, Pascal Bouvry,
- Abstract要約: データ中心のAIは、AIモデルのトレーニング、特にトランスフォーマーベースのTSFモデルの効率的なトレーニングに不可欠である、と私たちは主張する。
我々は、データ中心のAIの観点から、これまでの研究成果をレビューし、トランスフォーマーベースのアーキテクチャとデータ中心のAIの将来の開発のための基礎的な作業を行うつもりです。
- 参考スコア(独自算出の注目度): 36.31269406067809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alongside the continuous process of improving AI performance through the development of more sophisticated models, researchers have also focused their attention to the emerging concept of data-centric AI, which emphasizes the important role of data in a systematic machine learning training process. Nonetheless, the development of models has also continued apace. One result of this progress is the development of the Transformer Architecture, which possesses a high level of capability in multiple domains such as Natural Language Processing (NLP), Computer Vision (CV) and Time Series Forecasting (TSF). Its performance is, however, heavily dependent on input data preprocessing and output data evaluation, justifying a data-centric approach to future research. We argue that data-centric AI is essential for training AI models, particularly for transformer-based TSF models efficiently. However, there is a gap regarding the integration of transformer-based TSF and data-centric AI. This survey aims to pin down this gap via the extensive literature review based on the proposed taxonomy. We review the previous research works from a data-centric AI perspective and we intend to lay the foundation work for the future development of transformer-based architecture and data-centric AI.
- Abstract(参考訳): より洗練されたモデルの開発を通じてAIのパフォーマンスを改善する継続的なプロセスに加えて、研究者たちは、体系的な機械学習トレーニングプロセスにおけるデータの重要な役割を強調する、データ中心AIの新たな概念にも注意を向けている。
しかし、モデルの開発も継続している。
この進歩の結果として、自然言語処理(NLP)、コンピュータビジョン(CV)、時系列予測(TSF)といった複数の領域で高い能力を持つTransformer Architectureが開発された。
しかし、その性能は入力データ前処理と出力データ評価に大きく依存しており、将来の研究におけるデータ中心のアプローチを正当化している。
データ中心のAIは、AIモデルのトレーニング、特にトランスフォーマーベースのTSFモデルの効率的なトレーニングに不可欠である、と私たちは主張する。
しかし、トランスフォーマーベースのTSFとデータ中心のAIの統合にはギャップがある。
本調査は,提案された分類学に基づく広範な文献レビューを通じて,このギャップを埋めることを目的としている。
我々は、データ中心のAIの観点から、これまでの研究成果をレビューし、トランスフォーマーベースのアーキテクチャとデータ中心のAIの将来の開発のための基礎的な作業を行うつもりです。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
ロングテールモデルは高品質なデータに対する強い需要を示している。
データ中心のアプローチは、モデルパフォーマンスを改善するために、データの量と品質の両方を強化することを目的としています。
現在、情報強化の有効性を説明するメカニズムに関する研究が不足している。
論文 参考訳(メタデータ) (2023-11-03T06:34:37Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
近年、AIにおけるデータの役割は大幅に拡大し、データ中心AIという新たな概念が生まれた。
本稿では,データ中心型AIの必要性について論じ,続いて3つの一般的なデータ中心型目標の全体像を考察する。
これは、データライフサイクルのさまざまな段階にわたるタスクのグローバルなビューを提供する、初めての総合的な調査である、と私たちは信じています。
論文 参考訳(メタデータ) (2023-03-17T17:44:56Z) - Data-centric AI: Perspectives and Challenges [51.70828802140165]
データ中心AI(DCAI)は、モデル進歩からデータ品質と信頼性の確保への根本的なシフトを提唱している。
データ開発、推論データ開発、データメンテナンスの3つの一般的なミッションをまとめます。
論文 参考訳(メタデータ) (2023-01-12T05:28:59Z) - Data-Centric Artificial Intelligence [2.5874041837241304]
データ中心の人工知能(データ中心のAI)は、効率的で効率的なAIベースのシステムを構築する上で、データの体系的な設計とエンジニアリングが不可欠であることを強調する新しいパラダイムである。
関連する用語を定義し、データ中心のパラダイムとモデル中心のパラダイムを対比するための重要な特徴を提供し、データ中心のAIのためのフレームワークを導入します。
論文 参考訳(メタデータ) (2022-12-22T16:41:03Z) - The Principles of Data-Centric AI (DCAI) [9.211953610948862]
新たな概念としてのデータ中心型AI(DCAI)は、データ、その品質、ダイナミズムを最前線にもたらす。
この記事では、DCAIの基礎を概説するために、データ中心の視点と概念をまとめます。
論文 参考訳(メタデータ) (2022-11-26T16:43:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。