Federated Transfer-Ordered-Personalized Learning for Driver Monitoring
Application
- URL: http://arxiv.org/abs/2301.04829v2
- Date: Mon, 22 May 2023 05:52:56 GMT
- Title: Federated Transfer-Ordered-Personalized Learning for Driver Monitoring
Application
- Authors: Liangqi Yuan, Lu Su, Ziran Wang
- Abstract summary: Federated learning (FL) has been successfully applied to various domains, including driver monitoring applications (DMAs) on the internet of vehicles (IoV)
This paper proposes a federated transfer-ordered-personalized learning (FedTOP) framework to address the above problems and test on two real-world datasets.
The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA.
- Score: 15.731990691086123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) shines through in the internet of things (IoT) with
its ability to realize collaborative learning and improve learning efficiency
by sharing client model parameters trained on local data. Although FL has been
successfully applied to various domains, including driver monitoring
applications (DMAs) on the internet of vehicles (IoV), its usages still face
some open issues, such as data and system heterogeneity, large-scale
parallelism communication resources, malicious attacks, and data poisoning.
This paper proposes a federated transfer-ordered-personalized learning (FedTOP)
framework to address the above problems and test on two real-world datasets
with and without system heterogeneity. The performance of the three extensions,
transfer, ordered, and personalized, is compared by an ablation study and
achieves 92.32% and 95.96% accuracy on the test clients of two datasets,
respectively. Compared to the baseline, there is a 462% improvement in accuracy
and a 37.46% reduction in communication resource consumption. The results
demonstrate that the proposed FedTOP can be used as a highly accurate,
streamlined, privacy-preserving, cybersecurity-oriented, and personalized
framework for DMA.
Related papers
- Decorrelating Structure via Adapters Makes Ensemble Learning Practical for Semi-supervised Learning [50.868594148443215]
In computer vision, traditional ensemble learning methods exhibit either a low training efficiency or the limited performance.
We propose a lightweight, loss-function-free, and architecture-agnostic ensemble learning by the Decorrelating Structure via Adapters (DSA) for various visual tasks.
arXiv Detail & Related papers (2024-08-08T01:31:38Z) - CDFL: Efficient Federated Human Activity Recognition using Contrastive Learning and Deep Clustering [12.472038137777474]
Human Activity Recognition (HAR) is vital for the automation and intelligent identification of human actions through data from diverse sensors.
Traditional machine learning approaches by aggregating data on a central server and centralized processing are memory-intensive and raise privacy concerns.
This work proposes CDFL, an efficient federated learning framework for image-based HAR.
arXiv Detail & Related papers (2024-07-17T03:17:53Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data at the network edge.
We propose a novel Semi-supervised SFL system, termed SemiSFL, which incorporates clustering regularization to perform SFL with unlabeled and non-IID client data.
Our system provides a 3.8x speed-up in training time, reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.8% improvement in accuracy under non-IID scenarios.
arXiv Detail & Related papers (2023-07-29T02:35:37Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
This paper presents HFEDMS for incorporating practical FL into the emerging Industrial Metaverse.
It reduces data heterogeneity through dynamic grouping and training mode conversion.
Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics.
Experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices.
arXiv Detail & Related papers (2022-11-07T04:33:24Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
arXiv Detail & Related papers (2022-04-07T15:58:33Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - CatFedAvg: Optimising Communication-efficiency and Classification
Accuracy in Federated Learning [2.2172881631608456]
We introduce a new family of Federated Learning algorithms called CatFedAvg.
It improves the communication efficiency but improves the quality of learning using a category coverage inNIST strategy.
Our experiments show that an increase of 10% absolute points accuracy using the M dataset with 70% absolute points lower network transfer over FedAvg.
arXiv Detail & Related papers (2020-11-14T06:52:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.