論文の概要: Neural Spline Search for Quantile Probabilistic Modeling
- arxiv url: http://arxiv.org/abs/2301.04857v1
- Date: Thu, 12 Jan 2023 07:45:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 15:02:46.453515
- Title: Neural Spline Search for Quantile Probabilistic Modeling
- Title(参考訳): 量子確率モデルのためのニューラルスプライン探索
- Authors: Ruoxi Sun, Chun-Liang Li, Sercan O. Arik, Michael W. Dusenberry,
Chen-Yu Lee, Tomas Pfister
- Abstract要約: パラメトリックな仮定を伴わない観測データ分布を表現するために,非パラメトリックかつデータ駆動型手法であるニューラルスプラインサーチ(NSS)を提案する。
我々は,NASが,合成,実世界の回帰,時系列予測タスクにおいて,従来の手法よりも優れていたことを実証した。
- 参考スコア(独自算出の注目度): 35.914279831992964
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate estimation of output quantiles is crucial in many use cases, where
it is desired to model the range of possibility. Modeling target distribution
at arbitrary quantile levels and at arbitrary input attribute levels are
important to offer a comprehensive picture of the data, and requires the
quantile function to be expressive enough. The quantile function describing the
target distribution using quantile levels is critical for quantile regression.
Although various parametric forms for the distributions (that the quantile
function specifies) can be adopted, an everlasting problem is selecting the
most appropriate one that can properly approximate the data distributions. In
this paper, we propose a non-parametric and data-driven approach, Neural Spline
Search (NSS), to represent the observed data distribution without parametric
assumptions. NSS is flexible and expressive for modeling data distributions by
transforming the inputs with a series of monotonic spline regressions guided by
symbolic operators. We demonstrate that NSS outperforms previous methods on
synthetic, real-world regression and time-series forecasting tasks.
- Abstract(参考訳): 可能性範囲をモデル化することが望まれる多くのユースケースにおいて、出力量子化の正確な推定は不可欠である。
任意の質的レベルと任意の入力属性レベルでのターゲット分布のモデリングは、データの総合的な図示を提供するために重要であり、質的関数を十分に表現する必要がある。
量子化レベルを用いた対象分布を記述する量子化関数は、量子化回帰にとって重要である。
分布に対する様々なパラメトリック形式(量子関数が指定する)が採用できるが、永続的な問題はデータ分布を適切に近似できる最も適切なものを選択することである。
本稿では,非パラメトリックでデータ駆動の手法であるneural spline search(nss)を提案する。
nssは、シンボリック演算子によって導かれる一連の単調なスプライン回帰によって入力を変換することで、データ分布のモデリングに柔軟で表現力がある。
NSSは,合成,実世界の回帰,時系列予測タスクにおいて,従来の手法よりも優れていることを示す。
関連論文リスト
- Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks [4.58556584533865]
本稿ではDDPN(Deep Double Poisson Network)を提案する。
DDPNは既存の離散モデルを大幅に上回っている。
これは様々なカウント回帰データセットに適用できる。
論文 参考訳(メタデータ) (2024-06-13T16:02:03Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
本稿では,レノルズ平均Navier-Stokes (RANS) シミュレーションのためのデータ駆動閉包モデルを提案する。
パラメトリック閉包が不十分な問題領域内の領域を特定するために,完全ベイズ的定式化と余剰誘導先行法を組み合わせて提案する。
論文 参考訳(メタデータ) (2023-07-05T16:53:31Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
条件量子ニューラルプロセス(CQNP)は、ニューラルプロセスファミリーの新たなメンバーである。
本稿では,情報量推定に焦点をあてることから学習する量子レグレッションの拡張を提案する。
実データと合成データセットによる実験は、予測性能を大幅に改善した。
論文 参考訳(メタデータ) (2023-05-30T06:19:19Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
本稿では,科学的機械学習タスクのための情報ボトルネック(IB-UQ)による不確実性定量化のための新しいフレームワークを提案する。
我々は,入力データの信頼度に応じて,入力を潜在表現に符号化する信頼認識エンコーダによってボトルネックを埋め込む。
また,外挿不確かさの質を高めるために,データ拡張に基づく情報ボトルネック目標を提案する。
論文 参考訳(メタデータ) (2023-02-07T05:56:42Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
量子回帰(Quantile Regression)は、単一の条件量子を近似する方法を提供する。
QRロス関数の最小化は、非交差量子化を保証しない。
任意の数の量子を予測するための汎用的なディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-30T15:35:21Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
本稿では,ニューラルパラメータの空間に対するベイズ生成モデルを提案する。
タスク言語の組み合わせから得られたデータに基づいて、そのような潜伏変数よりも後部を推測する。
我々のモデルは、最先端のゼロショットの言語間転送手法よりも、同等か良い結果が得られる。
論文 参考訳(メタデータ) (2020-01-30T16:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。